Spaces:
Sleeping
Sleeping
File size: 7,676 Bytes
84f4f1d 1ec19be 42717bf abb0e4d f7ed1d0 abb0e4d f7ed1d0 1ec19be 42717bf 3d1738d 42717bf 3d1738d 42717bf 3d1738d 42717bf f7ed1d0 abb0e4d 4347c84 42717bf 16c0a32 f7ed1d0 16c0a32 f7ed1d0 2580a1e 42717bf abb0e4d 42717bf abb0e4d 42717bf abb0e4d 42717bf abb0e4d 1ec19be abb0e4d 1ec19be 3d1738d abb0e4d 1ec19be abb0e4d 1ec19be 3d1738d 1ec19be 3d1738d 1ec19be abb0e4d 1ec19be abb0e4d 3d1738d abb0e4d 3d1738d abb0e4d 1ec19be 3d1738d 1ec19be abb0e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
from typing import Optional, Dict, Any, ClassVar
import logging
import os
import sys
import traceback
from functools import lru_cache
import gc
import asyncio
from fastapi import BackgroundTasks
import psutil
# Initialize FastAPI
app = FastAPI()
# Debugging logs
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Get HF token
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
logger.warning("No HF_TOKEN found in environment variables")
MODELS = {
"nidra-v1": "m1k3wn/nidra-v1",
"nidra-v2": "m1k3wn/nidra-v2"
}
DEFAULT_GENERATION_CONFIGS = {
"nidra-v1": {
"max_length": 300,
"min_length": 150,
"num_beams": 8,
"temperature": 0.55,
"do_sample": True,
"top_p": 0.95,
"repetition_penalty": 4.5,
"no_repeat_ngram_size": 4,
"early_stopping": True,
"length_penalty": 1.2,
},
"nidra-v2": {
"max_length": 300,
"min_length": 150,
"num_beams": 8,
"temperature": 0.4,
"do_sample": True,
"top_p": 0.95,
"repetition_penalty": 3.5,
"no_repeat_ngram_size": 4,
"early_stopping": True,
"length_penalty": 1.2,
}
}
class ModelManager:
_instances: ClassVar[Dict[str, tuple]] = {}
@classmethod
async def get_model_and_tokenizer(cls, model_name: str):
if model_name not in cls._instances:
try:
model_path = MODELS[model_name]
logger.debug(f"Loading tokenizer and model from {model_path}")
tokenizer = T5Tokenizer.from_pretrained(
model_path,
token=HF_TOKEN,
use_fast=True
)
model = T5ForConditionalGeneration.from_pretrained(
model_path,
token=HF_TOKEN,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
device_map='auto'
)
model.eval()
torch.set_num_threads(6) # Number of CPUs used
cls._instances[model_name] = (model, tokenizer)
except Exception as e:
logger.error(f"Error loading {model_name}: {str(e)}")
raise
return cls._instances[model_name]
class PredictionRequest(BaseModel):
inputs: str
model: str = "nidra-v1"
parameters: Optional[Dict[str, Any]] = None
class PredictionResponse(BaseModel):
generated_text: str
selected_model: str # Changed from model_used to avoid namespace conflict
# Memory debug endpoint
@app.get("/debug/memory")
async def memory_usage():
process = psutil.Process()
memory_info = process.memory_info()
return {
"memory_used_mb": memory_info.rss / 1024 / 1024,
"memory_percent": process.memory_percent(),
"cpu_percent": process.cpu_percent()
}
# Version check
@app.get("/version")
async def version():
return {
"python_version": sys.version,
"models_available": list(MODELS.keys())
}
# Healthcheck endpoint
@app.get("/health")
async def health():
try:
logger.debug("Health check started")
logger.debug(f"HF_TOKEN present: {bool(HF_TOKEN)}")
logger.debug(f"Available models: {MODELS}")
result = await ModelManager.get_model_and_tokenizer("nidra-v1")
logger.debug("Model and tokenizer loaded successfully")
return {
"status": "healthy",
"loaded_models": list(ModelManager._instances.keys())
}
except Exception as e:
error_msg = f"Health check failed: {str(e)}\n{traceback.format_exc()}"
logger.error(error_msg)
return {
"status": "unhealthy",
"error": str(e)
}
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest, background_tasks: BackgroundTasks):
try:
if request.model not in MODELS:
raise HTTPException(
status_code=400,
detail=f"Invalid model. Available models: {list(MODELS.keys())}"
)
model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
# Add immediate cleanup of memory before generation
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
try:
model_generation_config = model.generation_config
generation_params.update({
k: v for k, v in model_generation_config.to_dict().items()
if v is not None
})
except Exception as config_load_error:
logger.warning(f"Using default generation config: {config_load_error}")
if request.parameters:
generation_params.update(request.parameters)
logger.debug(f"Final generation parameters: {generation_params}")
full_input = "Interpret this dream: " + request.inputs
inputs = tokenizer(
full_input,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True,
return_attention_mask=True
)
async def generate():
try:
return model.generate(
**inputs,
**{k: v for k, v in generation_params.items() if k in [
'max_length', 'min_length', 'do_sample', 'temperature',
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
'repetition_penalty', 'early_stopping'
]}
)
finally:
# Ensure cleanup happens even if generation fails
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
with torch.inference_mode():
outputs = await asyncio.wait_for(generate(), timeout=45.0) # Reduced timeout
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
background_tasks.add_task(cleanup_memory)
return PredictionResponse(
generated_text=result,
selected_model=request.model
)
except asyncio.TimeoutError:
logger.error("Generation timed out")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise HTTPException(status_code=504, detail="Generation timed out")
except Exception as e:
error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
logger.error(error_msg)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise HTTPException(status_code=500, detail=error_msg)
def cleanup_memory():
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Force Python garbage collection
gc.collect(generation=2)
except Exception as e:
logger.error(f"Error in cleanup: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |