Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse filesmajor refactor to utilise increased vCPUs. Improves memory cleanup etc
app.py
CHANGED
@@ -1,3 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
@@ -8,6 +216,10 @@ import os
|
|
8 |
import sys
|
9 |
import traceback
|
10 |
from functools import lru_cache
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Initialize FastAPI
|
13 |
app = FastAPI()
|
@@ -58,52 +270,39 @@ DEFAULT_GENERATION_CONFIGS = {
|
|
58 |
|
59 |
class ModelManager:
|
60 |
_instances: ClassVar[Dict[str, tuple]] = {}
|
|
|
61 |
|
62 |
@classmethod
|
63 |
-
def get_model_and_tokenizer(cls, model_name: str):
|
64 |
-
|
65 |
-
|
66 |
-
model_path = MODELS[model_name]
|
67 |
-
logger.info(f"Loading tokenizer for {model_name}")
|
68 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
69 |
-
model_path,
|
70 |
-
token=HF_TOKEN,
|
71 |
-
local_files_only=False,
|
72 |
-
return_special_tokens_mask=True
|
73 |
-
)
|
74 |
-
|
75 |
-
logger.info(f"Loading model {model_name}")
|
76 |
-
# Check if accelerate is available
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
model = T5ForConditionalGeneration.from_pretrained(
|
81 |
model_path,
|
82 |
token=HF_TOKEN,
|
83 |
-
local_files_only=
|
84 |
-
device_map="auto",
|
85 |
-
low_cpu_mem_usage=True,
|
86 |
-
torch_dtype=torch.float32
|
87 |
)
|
88 |
-
|
89 |
-
logger.warning("Accelerate package not found, falling back to CPU")
|
90 |
model = T5ForConditionalGeneration.from_pretrained(
|
91 |
model_path,
|
92 |
token=HF_TOKEN,
|
93 |
-
local_files_only=
|
|
|
|
|
94 |
)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
class PredictionRequest(BaseModel):
|
109 |
inputs: str
|
@@ -133,10 +332,8 @@ async def version():
|
|
133 |
|
134 |
@app.get("/health")
|
135 |
async def health():
|
136 |
-
# More comprehensive health check
|
137 |
try:
|
138 |
-
|
139 |
-
ModelManager.get_model_and_tokenizer("nidra-v1")
|
140 |
return {
|
141 |
"status": "healthy",
|
142 |
"loaded_models": list(ModelManager._instances.keys())
|
@@ -149,22 +346,17 @@ async def health():
|
|
149 |
}
|
150 |
|
151 |
@app.post("/predict", response_model=PredictionResponse)
|
152 |
-
async def predict(request: PredictionRequest):
|
153 |
try:
|
154 |
-
# Validate model
|
155 |
if request.model not in MODELS:
|
156 |
raise HTTPException(
|
157 |
status_code=400,
|
158 |
detail=f"Invalid model. Available models: {list(MODELS.keys())}"
|
159 |
)
|
160 |
|
161 |
-
|
162 |
-
model, tokenizer = ModelManager.get_model_and_tokenizer(request.model)
|
163 |
-
|
164 |
-
# Get generation parameters
|
165 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
166 |
|
167 |
-
# Try to load model's saved generation config
|
168 |
try:
|
169 |
model_generation_config = model.generation_config
|
170 |
generation_params.update({
|
@@ -174,33 +366,36 @@ async def predict(request: PredictionRequest):
|
|
174 |
except Exception as config_load_error:
|
175 |
logger.warning(f"Using default generation config: {config_load_error}")
|
176 |
|
177 |
-
# Override with request-specific parameters
|
178 |
if request.parameters:
|
179 |
generation_params.update(request.parameters)
|
180 |
|
181 |
logger.debug(f"Final generation parameters: {generation_params}")
|
182 |
|
183 |
-
# Prepare input
|
184 |
full_input = "Interpret this dream: " + request.inputs
|
185 |
inputs = tokenizer(
|
186 |
full_input,
|
187 |
return_tensors="pt",
|
188 |
truncation=True,
|
189 |
max_length=512,
|
190 |
-
padding=True
|
191 |
-
|
192 |
-
|
193 |
-
outputs = model.generate(
|
194 |
-
**inputs,
|
195 |
-
max_time=90.0, # 90 second timeout
|
196 |
-
**{k: v for k, v in generation_params.items() if k in [
|
197 |
-
'max_length', 'min_length', 'do_sample', 'temperature',
|
198 |
-
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
199 |
-
'repetition_penalty', 'early_stopping'
|
200 |
-
]}
|
201 |
)
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
204 |
|
205 |
return PredictionResponse(
|
206 |
generated_text=result,
|
@@ -212,6 +407,10 @@ async def predict(request: PredictionRequest):
|
|
212 |
logger.error(error_msg)
|
213 |
raise HTTPException(status_code=500, detail=error_msg)
|
214 |
|
|
|
|
|
|
|
|
|
215 |
if __name__ == "__main__":
|
216 |
import uvicorn
|
217 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
```pythonimport torch
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
|
5 |
+
from typing import Optional, Dict, Any, ClassVar
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import traceback
|
10 |
+
from functools import lru_cache
|
11 |
+
import gc
|
12 |
+
import asyncio
|
13 |
+
from fastapi import BackgroundTasks
|
14 |
+
import psutil
|
15 |
+
|
16 |
+
# Initialize FastAPI
|
17 |
+
app = FastAPI()
|
18 |
+
|
19 |
+
# Debugging logging with detailed formatting
|
20 |
+
# logging.basicConfig(
|
21 |
+
# level=logging.DEBUG,
|
22 |
+
# format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
23 |
+
# )
|
24 |
+
# logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
# Get HF token
|
27 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
28 |
+
if not HF_TOKEN:
|
29 |
+
logger.warning("No HF_TOKEN found in environment variables")
|
30 |
+
|
31 |
+
MODELS = {
|
32 |
+
"nidra-v1": "m1k3wn/nidra-v1",
|
33 |
+
"nidra-v2": "m1k3wn/nidra-v2"
|
34 |
+
}
|
35 |
+
|
36 |
+
DEFAULT_GENERATION_CONFIGS = {
|
37 |
+
"nidra-v1": {
|
38 |
+
"max_length": 300,
|
39 |
+
"min_length": 150,
|
40 |
+
"num_beams": 8,
|
41 |
+
"temperature": 0.55,
|
42 |
+
"do_sample": True,
|
43 |
+
"top_p": 0.95,
|
44 |
+
"repetition_penalty": 4.5,
|
45 |
+
"no_repeat_ngram_size": 4,
|
46 |
+
"early_stopping": True,
|
47 |
+
"length_penalty": 1.2,
|
48 |
+
},
|
49 |
+
"nidra-v2": {
|
50 |
+
"max_length": 300,
|
51 |
+
"min_length": 150,
|
52 |
+
"num_beams": 8,
|
53 |
+
"temperature": 0.4,
|
54 |
+
"do_sample": True,
|
55 |
+
"top_p": 0.95,
|
56 |
+
"repetition_penalty": 3.5,
|
57 |
+
"no_repeat_ngram_size": 4,
|
58 |
+
"early_stopping": True,
|
59 |
+
"length_penalty": 1.2,
|
60 |
+
}
|
61 |
+
}
|
62 |
+
|
63 |
+
class ModelManager:
|
64 |
+
_instances: ClassVar[Dict[str, tuple]] = {}
|
65 |
+
_lock = asyncio.Lock() # Add lock for thread safety
|
66 |
+
|
67 |
+
@classmethod
|
68 |
+
async def get_model_and_tokenizer(cls, model_name: str):
|
69 |
+
async with cls._lock:
|
70 |
+
if model_name not in cls._instances:
|
71 |
+
try:
|
72 |
+
model_path = MODELS[model_name]
|
73 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
74 |
+
model_path,
|
75 |
+
token=HF_TOKEN,
|
76 |
+
local_files_only=True # Cache after first load
|
77 |
+
)
|
78 |
+
|
79 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
80 |
+
model_path,
|
81 |
+
token=HF_TOKEN,
|
82 |
+
local_files_only=True,
|
83 |
+
low_cpu_mem_usage=True,
|
84 |
+
torch_dtype=torch.float32
|
85 |
+
)
|
86 |
+
|
87 |
+
# Enable parallel processing
|
88 |
+
model.eval()
|
89 |
+
torch.set_num_threads(8) # Use all CPU cores
|
90 |
+
|
91 |
+
cls._instances[model_name] = (model, tokenizer)
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(f"Error loading {model_name}: {str(e)}")
|
95 |
+
raise
|
96 |
+
|
97 |
+
return cls._instances[model_name]
|
98 |
+
|
99 |
+
class PredictionRequest(BaseModel):
|
100 |
+
inputs: str
|
101 |
+
model: str = "nidra-v1"
|
102 |
+
parameters: Optional[Dict[str, Any]] = None
|
103 |
+
|
104 |
+
class PredictionResponse(BaseModel):
|
105 |
+
generated_text: str
|
106 |
+
selected_model: str # Changed from model_used to avoid namespace conflict
|
107 |
+
|
108 |
+
@app.get("/debug/memory")
|
109 |
+
async def memory_usage():
|
110 |
+
process = psutil.Process()
|
111 |
+
memory_info = process.memory_info()
|
112 |
+
return {
|
113 |
+
"memory_used_mb": memory_info.rss / 1024 / 1024,
|
114 |
+
"memory_percent": process.memory_percent(),
|
115 |
+
"cpu_percent": process.cpu_percent()
|
116 |
+
}
|
117 |
+
|
118 |
+
@app.get("/version")
|
119 |
+
async def version():
|
120 |
+
return {
|
121 |
+
"python_version": sys.version,
|
122 |
+
"models_available": list(MODELS.keys())
|
123 |
+
}
|
124 |
+
|
125 |
+
@app.get("/health")
|
126 |
+
async def health():
|
127 |
+
try:
|
128 |
+
await ModelManager.get_model_and_tokenizer("nidra-v1")
|
129 |
+
return {
|
130 |
+
"status": "healthy",
|
131 |
+
"loaded_models": list(ModelManager._instances.keys())
|
132 |
+
}
|
133 |
+
except Exception as e:
|
134 |
+
logger.error(f"Health check failed: {str(e)}")
|
135 |
+
return {
|
136 |
+
"status": "unhealthy",
|
137 |
+
"error": str(e)
|
138 |
+
}
|
139 |
+
|
140 |
+
@app.post("/predict", response_model=PredictionResponse)
|
141 |
+
async def predict(request: PredictionRequest, background_tasks: BackgroundTasks):
|
142 |
+
try:
|
143 |
+
if request.model not in MODELS:
|
144 |
+
raise HTTPException(
|
145 |
+
status_code=400,
|
146 |
+
detail=f"Invalid model. Available models: {list(MODELS.keys())}"
|
147 |
+
)
|
148 |
+
|
149 |
+
model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
|
150 |
+
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
151 |
+
|
152 |
+
try:
|
153 |
+
model_generation_config = model.generation_config
|
154 |
+
generation_params.update({
|
155 |
+
k: v for k, v in model_generation_config.to_dict().items()
|
156 |
+
if v is not None
|
157 |
+
})
|
158 |
+
except Exception as config_load_error:
|
159 |
+
logger.warning(f"Using default generation config: {config_load_error}")
|
160 |
+
|
161 |
+
if request.parameters:
|
162 |
+
generation_params.update(request.parameters)
|
163 |
+
|
164 |
+
logger.debug(f"Final generation parameters: {generation_params}")
|
165 |
+
|
166 |
+
full_input = "Interpret this dream: " + request.inputs
|
167 |
+
inputs = tokenizer(
|
168 |
+
full_input,
|
169 |
+
return_tensors="pt",
|
170 |
+
truncation=True,
|
171 |
+
max_length=512,
|
172 |
+
padding=True,
|
173 |
+
return_attention_mask=True
|
174 |
+
)
|
175 |
+
|
176 |
+
async def generate():
|
177 |
+
return model.generate(
|
178 |
+
**inputs,
|
179 |
+
**{k: v for k, v in generation_params.items() if k in [
|
180 |
+
'max_length', 'min_length', 'do_sample', 'temperature',
|
181 |
+
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
182 |
+
'repetition_penalty', 'early_stopping'
|
183 |
+
]}
|
184 |
+
)
|
185 |
+
|
186 |
+
with torch.inference_mode():
|
187 |
+
outputs = await asyncio.wait_for(generate(), timeout=70.0)
|
188 |
+
|
189 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
190 |
+
background_tasks.add_task(cleanup_memory)
|
191 |
+
|
192 |
+
return PredictionResponse(
|
193 |
+
generated_text=result,
|
194 |
+
selected_model=request.model
|
195 |
+
)
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
|
199 |
+
logger.error(error_msg)
|
200 |
+
raise HTTPException(status_code=500, detail=error_msg)
|
201 |
+
|
202 |
+
def cleanup_memory():
|
203 |
+
gc.collect()
|
204 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
import uvicorn
|
208 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
209 |
import torch
|
210 |
from fastapi import FastAPI, HTTPException
|
211 |
from pydantic import BaseModel
|
|
|
216 |
import sys
|
217 |
import traceback
|
218 |
from functools import lru_cache
|
219 |
+
import gc
|
220 |
+
import asyncio
|
221 |
+
from fastapi import BackgroundTasks
|
222 |
+
import psutil
|
223 |
|
224 |
# Initialize FastAPI
|
225 |
app = FastAPI()
|
|
|
270 |
|
271 |
class ModelManager:
|
272 |
_instances: ClassVar[Dict[str, tuple]] = {}
|
273 |
+
_lock = asyncio.Lock() # Add lock for thread safety
|
274 |
|
275 |
@classmethod
|
276 |
+
async def get_model_and_tokenizer(cls, model_name: str):
|
277 |
+
async with cls._lock:
|
278 |
+
if model_name not in cls._instances:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
try:
|
280 |
+
model_path = MODELS[model_name]
|
281 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
|
|
282 |
model_path,
|
283 |
token=HF_TOKEN,
|
284 |
+
local_files_only=True # Cache after first load
|
|
|
|
|
|
|
285 |
)
|
286 |
+
|
|
|
287 |
model = T5ForConditionalGeneration.from_pretrained(
|
288 |
model_path,
|
289 |
token=HF_TOKEN,
|
290 |
+
local_files_only=True,
|
291 |
+
low_cpu_mem_usage=True,
|
292 |
+
torch_dtype=torch.float32
|
293 |
)
|
294 |
+
|
295 |
+
# Enable parallel processing
|
296 |
+
model.eval()
|
297 |
+
torch.set_num_threads(8) # Use all CPU cores
|
298 |
+
|
299 |
+
cls._instances[model_name] = (model, tokenizer)
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Error loading {model_name}: {str(e)}")
|
303 |
+
raise
|
304 |
+
|
305 |
+
return cls._instances[model_name]
|
306 |
|
307 |
class PredictionRequest(BaseModel):
|
308 |
inputs: str
|
|
|
332 |
|
333 |
@app.get("/health")
|
334 |
async def health():
|
|
|
335 |
try:
|
336 |
+
await ModelManager.get_model_and_tokenizer("nidra-v1")
|
|
|
337 |
return {
|
338 |
"status": "healthy",
|
339 |
"loaded_models": list(ModelManager._instances.keys())
|
|
|
346 |
}
|
347 |
|
348 |
@app.post("/predict", response_model=PredictionResponse)
|
349 |
+
async def predict(request: PredictionRequest, background_tasks: BackgroundTasks):
|
350 |
try:
|
|
|
351 |
if request.model not in MODELS:
|
352 |
raise HTTPException(
|
353 |
status_code=400,
|
354 |
detail=f"Invalid model. Available models: {list(MODELS.keys())}"
|
355 |
)
|
356 |
|
357 |
+
model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
|
|
|
|
|
|
|
358 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
359 |
|
|
|
360 |
try:
|
361 |
model_generation_config = model.generation_config
|
362 |
generation_params.update({
|
|
|
366 |
except Exception as config_load_error:
|
367 |
logger.warning(f"Using default generation config: {config_load_error}")
|
368 |
|
|
|
369 |
if request.parameters:
|
370 |
generation_params.update(request.parameters)
|
371 |
|
372 |
logger.debug(f"Final generation parameters: {generation_params}")
|
373 |
|
|
|
374 |
full_input = "Interpret this dream: " + request.inputs
|
375 |
inputs = tokenizer(
|
376 |
full_input,
|
377 |
return_tensors="pt",
|
378 |
truncation=True,
|
379 |
max_length=512,
|
380 |
+
padding=True,
|
381 |
+
return_attention_mask=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
)
|
383 |
|
384 |
+
async def generate():
|
385 |
+
return model.generate(
|
386 |
+
**inputs,
|
387 |
+
**{k: v for k, v in generation_params.items() if k in [
|
388 |
+
'max_length', 'min_length', 'do_sample', 'temperature',
|
389 |
+
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
390 |
+
'repetition_penalty', 'early_stopping'
|
391 |
+
]}
|
392 |
+
)
|
393 |
+
|
394 |
+
with torch.inference_mode():
|
395 |
+
outputs = await asyncio.wait_for(generate(), timeout=70.0)
|
396 |
+
|
397 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
398 |
+
background_tasks.add_task(cleanup_memory)
|
399 |
|
400 |
return PredictionResponse(
|
401 |
generated_text=result,
|
|
|
407 |
logger.error(error_msg)
|
408 |
raise HTTPException(status_code=500, detail=error_msg)
|
409 |
|
410 |
+
def cleanup_memory():
|
411 |
+
gc.collect()
|
412 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
413 |
+
|
414 |
if __name__ == "__main__":
|
415 |
import uvicorn
|
416 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|