Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse filesadds debugging error handling
app.py
CHANGED
@@ -1,28 +1,33 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
|
4 |
-
from typing import Optional, Dict, Any
|
5 |
import logging
|
6 |
import os
|
7 |
import sys
|
8 |
import traceback
|
|
|
9 |
|
10 |
-
# Initialize FastAPI
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
# Set up logging
|
14 |
-
logging.basicConfig(
|
|
|
|
|
|
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
# Get HF token
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
19 |
|
20 |
MODELS = {
|
21 |
"nidra-v1": "m1k3wn/nidra-v1",
|
22 |
"nidra-v2": "m1k3wn/nidra-v2"
|
23 |
}
|
24 |
|
25 |
-
# Define default generation configurations for each model
|
26 |
DEFAULT_GENERATION_CONFIGS = {
|
27 |
"nidra-v1": {
|
28 |
"max_length": 300,
|
@@ -49,105 +54,139 @@ DEFAULT_GENERATION_CONFIGS = {
|
|
49 |
"length_penalty": 1.2,
|
50 |
}
|
51 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
class PredictionRequest(BaseModel):
|
53 |
inputs: str
|
54 |
model: str = "nidra-v1"
|
55 |
-
parameters: Optional[Dict[str, Any]] = None
|
56 |
|
57 |
class PredictionResponse(BaseModel):
|
58 |
generated_text: str
|
|
|
59 |
|
60 |
@app.get("/version")
|
61 |
async def version():
|
62 |
-
return {
|
|
|
|
|
|
|
63 |
|
64 |
@app.get("/health")
|
65 |
async def health():
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
@app.post("/predict", response_model=PredictionResponse)
|
69 |
async def predict(request: PredictionRequest):
|
70 |
try:
|
71 |
-
|
72 |
if request.model not in MODELS:
|
73 |
-
raise HTTPException(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
#
|
79 |
-
|
80 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
81 |
-
model_path,
|
82 |
-
token=HF_TOKEN,
|
83 |
-
local_files_only=False,
|
84 |
-
return_special_tokens_mask=True
|
85 |
-
)
|
86 |
-
logger.info("Tokenizer loaded successfully")
|
87 |
-
|
88 |
-
logger.info("Attempting to load model...")
|
89 |
-
model = T5ForConditionalGeneration.from_pretrained(
|
90 |
-
model_path,
|
91 |
-
token=HF_TOKEN,
|
92 |
-
local_files_only=False
|
93 |
-
)
|
94 |
-
logger.info("Model loaded successfully")
|
95 |
|
96 |
-
#
|
97 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
98 |
|
99 |
# Try to load model's saved generation config
|
100 |
try:
|
101 |
-
model_generation_config =
|
102 |
-
# Convert to dict to merge with default configs
|
103 |
generation_params.update({
|
104 |
-
k: v for k, v in model_generation_config.to_dict().items()
|
105 |
if v is not None
|
106 |
})
|
107 |
except Exception as config_load_error:
|
108 |
-
logger.warning(f"
|
109 |
|
110 |
-
# Override with request-specific parameters
|
111 |
if request.parameters:
|
112 |
generation_params.update(request.parameters)
|
113 |
|
114 |
-
logger.
|
115 |
|
116 |
-
|
117 |
full_input = "Interpret this dream: " + request.inputs
|
118 |
-
logger.info(f"Processing input: {full_input}")
|
119 |
-
|
120 |
-
logger.info("Tokenizing input...")
|
121 |
inputs = tokenizer(
|
122 |
full_input,
|
123 |
return_tensors="pt",
|
124 |
truncation=True,
|
125 |
max_length=512,
|
126 |
padding=True
|
127 |
-
)
|
128 |
-
|
129 |
-
|
130 |
-
logger.info("Generating output...")
|
131 |
-
|
132 |
-
# Generate with final parameters
|
133 |
outputs = model.generate(
|
134 |
-
**inputs,
|
135 |
**{k: v for k, v in generation_params.items() if k in [
|
136 |
-
'max_length', 'min_length', 'do_sample', 'temperature',
|
137 |
-
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
138 |
'repetition_penalty', 'early_stopping'
|
139 |
]}
|
140 |
)
|
141 |
-
|
142 |
-
|
143 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
144 |
-
logger.info(f"Final result: {result}")
|
145 |
-
|
146 |
-
return PredictionResponse(generated_text=result)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
148 |
except Exception as e:
|
149 |
-
|
150 |
-
logger.error(
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
|
4 |
+
from typing import Optional, Dict, Any, ClassVar
|
5 |
import logging
|
6 |
import os
|
7 |
import sys
|
8 |
import traceback
|
9 |
+
from functools import lru_cache
|
10 |
|
11 |
+
# Initialize FastAPI
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Set up logging with more detailed formatting
|
15 |
+
logging.basicConfig(
|
16 |
+
level=logging.DEBUG,
|
17 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
18 |
+
)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
# Get HF token
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
23 |
+
if not HF_TOKEN:
|
24 |
+
logger.warning("No HF_TOKEN found in environment variables")
|
25 |
|
26 |
MODELS = {
|
27 |
"nidra-v1": "m1k3wn/nidra-v1",
|
28 |
"nidra-v2": "m1k3wn/nidra-v2"
|
29 |
}
|
30 |
|
|
|
31 |
DEFAULT_GENERATION_CONFIGS = {
|
32 |
"nidra-v1": {
|
33 |
"max_length": 300,
|
|
|
54 |
"length_penalty": 1.2,
|
55 |
}
|
56 |
}
|
57 |
+
|
58 |
+
class ModelManager:
|
59 |
+
_instances: ClassVar[Dict[str, tuple]] = {}
|
60 |
+
|
61 |
+
@classmethod
|
62 |
+
def get_model_and_tokenizer(cls, model_name: str):
|
63 |
+
if model_name not in cls._instances:
|
64 |
+
try:
|
65 |
+
model_path = MODELS[model_name]
|
66 |
+
logger.info(f"Loading tokenizer for {model_name}")
|
67 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
68 |
+
model_path,
|
69 |
+
token=HF_TOKEN,
|
70 |
+
local_files_only=False,
|
71 |
+
return_special_tokens_mask=True
|
72 |
+
)
|
73 |
+
|
74 |
+
logger.info(f"Loading model {model_name}")
|
75 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
76 |
+
model_path,
|
77 |
+
token=HF_TOKEN,
|
78 |
+
local_files_only=False,
|
79 |
+
device_map="auto" # This will handle GPU if available
|
80 |
+
)
|
81 |
+
|
82 |
+
cls._instances[model_name] = (model, tokenizer)
|
83 |
+
logger.info(f"Successfully loaded {model_name}")
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Error loading {model_name}: {str(e)}")
|
86 |
+
raise HTTPException(
|
87 |
+
status_code=500,
|
88 |
+
detail=f"Failed to load model {model_name}: {str(e)}"
|
89 |
+
)
|
90 |
+
|
91 |
+
return cls._instances[model_name]
|
92 |
+
|
93 |
class PredictionRequest(BaseModel):
|
94 |
inputs: str
|
95 |
model: str = "nidra-v1"
|
96 |
+
parameters: Optional[Dict[str, Any]] = None
|
97 |
|
98 |
class PredictionResponse(BaseModel):
|
99 |
generated_text: str
|
100 |
+
model_used: str
|
101 |
|
102 |
@app.get("/version")
|
103 |
async def version():
|
104 |
+
return {
|
105 |
+
"python_version": sys.version,
|
106 |
+
"models_available": list(MODELS.keys())
|
107 |
+
}
|
108 |
|
109 |
@app.get("/health")
|
110 |
async def health():
|
111 |
+
# More comprehensive health check
|
112 |
+
try:
|
113 |
+
# Try to load at least one model to verify functionality
|
114 |
+
ModelManager.get_model_and_tokenizer("nidra-v1")
|
115 |
+
return {
|
116 |
+
"status": "healthy",
|
117 |
+
"loaded_models": list(ModelManager._instances.keys())
|
118 |
+
}
|
119 |
+
except Exception as e:
|
120 |
+
logger.error(f"Health check failed: {str(e)}")
|
121 |
+
return {
|
122 |
+
"status": "unhealthy",
|
123 |
+
"error": str(e)
|
124 |
+
}
|
125 |
|
126 |
@app.post("/predict", response_model=PredictionResponse)
|
127 |
async def predict(request: PredictionRequest):
|
128 |
try:
|
129 |
+
# Validate model
|
130 |
if request.model not in MODELS:
|
131 |
+
raise HTTPException(
|
132 |
+
status_code=400,
|
133 |
+
detail=f"Invalid model. Available models: {list(MODELS.keys())}"
|
134 |
+
)
|
135 |
+
|
136 |
+
# Get cached model and tokenizer
|
137 |
+
model, tokenizer = ModelManager.get_model_and_tokenizer(request.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
# Get generation parameters
|
140 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
141 |
|
142 |
# Try to load model's saved generation config
|
143 |
try:
|
144 |
+
model_generation_config = model.generation_config
|
|
|
145 |
generation_params.update({
|
146 |
+
k: v for k, v in model_generation_config.to_dict().items()
|
147 |
if v is not None
|
148 |
})
|
149 |
except Exception as config_load_error:
|
150 |
+
logger.warning(f"Using default generation config: {config_load_error}")
|
151 |
|
152 |
+
# Override with request-specific parameters
|
153 |
if request.parameters:
|
154 |
generation_params.update(request.parameters)
|
155 |
|
156 |
+
logger.debug(f"Final generation parameters: {generation_params}")
|
157 |
|
158 |
+
# Prepare input
|
159 |
full_input = "Interpret this dream: " + request.inputs
|
|
|
|
|
|
|
160 |
inputs = tokenizer(
|
161 |
full_input,
|
162 |
return_tensors="pt",
|
163 |
truncation=True,
|
164 |
max_length=512,
|
165 |
padding=True
|
166 |
+
).to(model.device) # Ensure inputs are on same device as model
|
167 |
+
|
168 |
+
# Generate
|
|
|
|
|
|
|
169 |
outputs = model.generate(
|
170 |
+
**inputs,
|
171 |
**{k: v for k, v in generation_params.items() if k in [
|
172 |
+
'max_length', 'min_length', 'do_sample', 'temperature',
|
173 |
+
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
174 |
'repetition_penalty', 'early_stopping'
|
175 |
]}
|
176 |
)
|
177 |
+
|
|
|
178 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
179 |
|
180 |
+
return PredictionResponse(
|
181 |
+
generated_text=result,
|
182 |
+
model_used=request.model
|
183 |
+
)
|
184 |
+
|
185 |
except Exception as e:
|
186 |
+
error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
|
187 |
+
logger.error(error_msg)
|
188 |
+
raise HTTPException(status_code=500, detail=error_msg)
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
import uvicorn
|
192 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|