Spaces:
Sleeping
Sleeping
Update app.py
Browse filesadds debugging error handling
app.py
CHANGED
|
@@ -1,28 +1,33 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
|
| 4 |
-
from typing import Optional, Dict, Any
|
| 5 |
import logging
|
| 6 |
import os
|
| 7 |
import sys
|
| 8 |
import traceback
|
|
|
|
| 9 |
|
| 10 |
-
# Initialize FastAPI
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
-
# Set up logging
|
| 14 |
-
logging.basicConfig(
|
|
|
|
|
|
|
|
|
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
# Get HF token
|
| 18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
| 19 |
|
| 20 |
MODELS = {
|
| 21 |
"nidra-v1": "m1k3wn/nidra-v1",
|
| 22 |
"nidra-v2": "m1k3wn/nidra-v2"
|
| 23 |
}
|
| 24 |
|
| 25 |
-
# Define default generation configurations for each model
|
| 26 |
DEFAULT_GENERATION_CONFIGS = {
|
| 27 |
"nidra-v1": {
|
| 28 |
"max_length": 300,
|
|
@@ -49,105 +54,139 @@ DEFAULT_GENERATION_CONFIGS = {
|
|
| 49 |
"length_penalty": 1.2,
|
| 50 |
}
|
| 51 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
class PredictionRequest(BaseModel):
|
| 53 |
inputs: str
|
| 54 |
model: str = "nidra-v1"
|
| 55 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 56 |
|
| 57 |
class PredictionResponse(BaseModel):
|
| 58 |
generated_text: str
|
|
|
|
| 59 |
|
| 60 |
@app.get("/version")
|
| 61 |
async def version():
|
| 62 |
-
return {
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
@app.get("/health")
|
| 65 |
async def health():
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
@app.post("/predict", response_model=PredictionResponse)
|
| 69 |
async def predict(request: PredictionRequest):
|
| 70 |
try:
|
| 71 |
-
|
| 72 |
if request.model not in MODELS:
|
| 73 |
-
raise HTTPException(
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
| 81 |
-
model_path,
|
| 82 |
-
token=HF_TOKEN,
|
| 83 |
-
local_files_only=False,
|
| 84 |
-
return_special_tokens_mask=True
|
| 85 |
-
)
|
| 86 |
-
logger.info("Tokenizer loaded successfully")
|
| 87 |
-
|
| 88 |
-
logger.info("Attempting to load model...")
|
| 89 |
-
model = T5ForConditionalGeneration.from_pretrained(
|
| 90 |
-
model_path,
|
| 91 |
-
token=HF_TOKEN,
|
| 92 |
-
local_files_only=False
|
| 93 |
-
)
|
| 94 |
-
logger.info("Model loaded successfully")
|
| 95 |
|
| 96 |
-
#
|
| 97 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
| 98 |
|
| 99 |
# Try to load model's saved generation config
|
| 100 |
try:
|
| 101 |
-
model_generation_config =
|
| 102 |
-
# Convert to dict to merge with default configs
|
| 103 |
generation_params.update({
|
| 104 |
-
k: v for k, v in model_generation_config.to_dict().items()
|
| 105 |
if v is not None
|
| 106 |
})
|
| 107 |
except Exception as config_load_error:
|
| 108 |
-
logger.warning(f"
|
| 109 |
|
| 110 |
-
# Override with request-specific parameters
|
| 111 |
if request.parameters:
|
| 112 |
generation_params.update(request.parameters)
|
| 113 |
|
| 114 |
-
logger.
|
| 115 |
|
| 116 |
-
|
| 117 |
full_input = "Interpret this dream: " + request.inputs
|
| 118 |
-
logger.info(f"Processing input: {full_input}")
|
| 119 |
-
|
| 120 |
-
logger.info("Tokenizing input...")
|
| 121 |
inputs = tokenizer(
|
| 122 |
full_input,
|
| 123 |
return_tensors="pt",
|
| 124 |
truncation=True,
|
| 125 |
max_length=512,
|
| 126 |
padding=True
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
logger.info("Generating output...")
|
| 131 |
-
|
| 132 |
-
# Generate with final parameters
|
| 133 |
outputs = model.generate(
|
| 134 |
-
**inputs,
|
| 135 |
**{k: v for k, v in generation_params.items() if k in [
|
| 136 |
-
'max_length', 'min_length', 'do_sample', 'temperature',
|
| 137 |
-
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
| 138 |
'repetition_penalty', 'early_stopping'
|
| 139 |
]}
|
| 140 |
)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 144 |
-
logger.info(f"Final result: {result}")
|
| 145 |
-
|
| 146 |
-
return PredictionResponse(generated_text=result)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
except Exception as e:
|
| 149 |
-
|
| 150 |
-
logger.error(
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
|
| 4 |
+
from typing import Optional, Dict, Any, ClassVar
|
| 5 |
import logging
|
| 6 |
import os
|
| 7 |
import sys
|
| 8 |
import traceback
|
| 9 |
+
from functools import lru_cache
|
| 10 |
|
| 11 |
+
# Initialize FastAPI
|
| 12 |
app = FastAPI()
|
| 13 |
|
| 14 |
+
# Set up logging with more detailed formatting
|
| 15 |
+
logging.basicConfig(
|
| 16 |
+
level=logging.DEBUG,
|
| 17 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 18 |
+
)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
# Get HF token
|
| 22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 23 |
+
if not HF_TOKEN:
|
| 24 |
+
logger.warning("No HF_TOKEN found in environment variables")
|
| 25 |
|
| 26 |
MODELS = {
|
| 27 |
"nidra-v1": "m1k3wn/nidra-v1",
|
| 28 |
"nidra-v2": "m1k3wn/nidra-v2"
|
| 29 |
}
|
| 30 |
|
|
|
|
| 31 |
DEFAULT_GENERATION_CONFIGS = {
|
| 32 |
"nidra-v1": {
|
| 33 |
"max_length": 300,
|
|
|
|
| 54 |
"length_penalty": 1.2,
|
| 55 |
}
|
| 56 |
}
|
| 57 |
+
|
| 58 |
+
class ModelManager:
|
| 59 |
+
_instances: ClassVar[Dict[str, tuple]] = {}
|
| 60 |
+
|
| 61 |
+
@classmethod
|
| 62 |
+
def get_model_and_tokenizer(cls, model_name: str):
|
| 63 |
+
if model_name not in cls._instances:
|
| 64 |
+
try:
|
| 65 |
+
model_path = MODELS[model_name]
|
| 66 |
+
logger.info(f"Loading tokenizer for {model_name}")
|
| 67 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
| 68 |
+
model_path,
|
| 69 |
+
token=HF_TOKEN,
|
| 70 |
+
local_files_only=False,
|
| 71 |
+
return_special_tokens_mask=True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
logger.info(f"Loading model {model_name}")
|
| 75 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
| 76 |
+
model_path,
|
| 77 |
+
token=HF_TOKEN,
|
| 78 |
+
local_files_only=False,
|
| 79 |
+
device_map="auto" # This will handle GPU if available
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
cls._instances[model_name] = (model, tokenizer)
|
| 83 |
+
logger.info(f"Successfully loaded {model_name}")
|
| 84 |
+
except Exception as e:
|
| 85 |
+
logger.error(f"Error loading {model_name}: {str(e)}")
|
| 86 |
+
raise HTTPException(
|
| 87 |
+
status_code=500,
|
| 88 |
+
detail=f"Failed to load model {model_name}: {str(e)}"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
return cls._instances[model_name]
|
| 92 |
+
|
| 93 |
class PredictionRequest(BaseModel):
|
| 94 |
inputs: str
|
| 95 |
model: str = "nidra-v1"
|
| 96 |
+
parameters: Optional[Dict[str, Any]] = None
|
| 97 |
|
| 98 |
class PredictionResponse(BaseModel):
|
| 99 |
generated_text: str
|
| 100 |
+
model_used: str
|
| 101 |
|
| 102 |
@app.get("/version")
|
| 103 |
async def version():
|
| 104 |
+
return {
|
| 105 |
+
"python_version": sys.version,
|
| 106 |
+
"models_available": list(MODELS.keys())
|
| 107 |
+
}
|
| 108 |
|
| 109 |
@app.get("/health")
|
| 110 |
async def health():
|
| 111 |
+
# More comprehensive health check
|
| 112 |
+
try:
|
| 113 |
+
# Try to load at least one model to verify functionality
|
| 114 |
+
ModelManager.get_model_and_tokenizer("nidra-v1")
|
| 115 |
+
return {
|
| 116 |
+
"status": "healthy",
|
| 117 |
+
"loaded_models": list(ModelManager._instances.keys())
|
| 118 |
+
}
|
| 119 |
+
except Exception as e:
|
| 120 |
+
logger.error(f"Health check failed: {str(e)}")
|
| 121 |
+
return {
|
| 122 |
+
"status": "unhealthy",
|
| 123 |
+
"error": str(e)
|
| 124 |
+
}
|
| 125 |
|
| 126 |
@app.post("/predict", response_model=PredictionResponse)
|
| 127 |
async def predict(request: PredictionRequest):
|
| 128 |
try:
|
| 129 |
+
# Validate model
|
| 130 |
if request.model not in MODELS:
|
| 131 |
+
raise HTTPException(
|
| 132 |
+
status_code=400,
|
| 133 |
+
detail=f"Invalid model. Available models: {list(MODELS.keys())}"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Get cached model and tokenizer
|
| 137 |
+
model, tokenizer = ModelManager.get_model_and_tokenizer(request.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
# Get generation parameters
|
| 140 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
| 141 |
|
| 142 |
# Try to load model's saved generation config
|
| 143 |
try:
|
| 144 |
+
model_generation_config = model.generation_config
|
|
|
|
| 145 |
generation_params.update({
|
| 146 |
+
k: v for k, v in model_generation_config.to_dict().items()
|
| 147 |
if v is not None
|
| 148 |
})
|
| 149 |
except Exception as config_load_error:
|
| 150 |
+
logger.warning(f"Using default generation config: {config_load_error}")
|
| 151 |
|
| 152 |
+
# Override with request-specific parameters
|
| 153 |
if request.parameters:
|
| 154 |
generation_params.update(request.parameters)
|
| 155 |
|
| 156 |
+
logger.debug(f"Final generation parameters: {generation_params}")
|
| 157 |
|
| 158 |
+
# Prepare input
|
| 159 |
full_input = "Interpret this dream: " + request.inputs
|
|
|
|
|
|
|
|
|
|
| 160 |
inputs = tokenizer(
|
| 161 |
full_input,
|
| 162 |
return_tensors="pt",
|
| 163 |
truncation=True,
|
| 164 |
max_length=512,
|
| 165 |
padding=True
|
| 166 |
+
).to(model.device) # Ensure inputs are on same device as model
|
| 167 |
+
|
| 168 |
+
# Generate
|
|
|
|
|
|
|
|
|
|
| 169 |
outputs = model.generate(
|
| 170 |
+
**inputs,
|
| 171 |
**{k: v for k, v in generation_params.items() if k in [
|
| 172 |
+
'max_length', 'min_length', 'do_sample', 'temperature',
|
| 173 |
+
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
| 174 |
'repetition_penalty', 'early_stopping'
|
| 175 |
]}
|
| 176 |
)
|
| 177 |
+
|
|
|
|
| 178 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
return PredictionResponse(
|
| 181 |
+
generated_text=result,
|
| 182 |
+
model_used=request.model
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
except Exception as e:
|
| 186 |
+
error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
|
| 187 |
+
logger.error(error_msg)
|
| 188 |
+
raise HTTPException(status_code=500, detail=error_msg)
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
import uvicorn
|
| 192 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|