Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse filesrefactor to try and stop request hangs
app.py
CHANGED
@@ -70,21 +70,22 @@ class ModelManager:
|
|
70 |
model_path = MODELS[model_name]
|
71 |
logger.debug(f"Loading tokenizer and model from {model_path}")
|
72 |
|
73 |
-
# Simplified tokenizer loading
|
74 |
tokenizer = T5Tokenizer.from_pretrained(
|
75 |
model_path,
|
76 |
token=HF_TOKEN,
|
77 |
-
use_fast=True
|
78 |
)
|
79 |
|
80 |
-
# Simplified model loading
|
81 |
model = T5ForConditionalGeneration.from_pretrained(
|
82 |
model_path,
|
83 |
token=HF_TOKEN,
|
84 |
-
torch_dtype=torch.float32
|
|
|
|
|
85 |
)
|
86 |
|
87 |
model.eval()
|
|
|
88 |
cls._instances[model_name] = (model, tokenizer)
|
89 |
|
90 |
except Exception as e:
|
@@ -154,6 +155,12 @@ async def predict(request: PredictionRequest, background_tasks: BackgroundTasks)
|
|
154 |
)
|
155 |
|
156 |
model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
158 |
|
159 |
try:
|
@@ -181,17 +188,23 @@ async def predict(request: PredictionRequest, background_tasks: BackgroundTasks)
|
|
181 |
)
|
182 |
|
183 |
async def generate():
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
with torch.inference_mode():
|
194 |
-
outputs = await asyncio.wait_for(generate(), timeout=
|
195 |
|
196 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
197 |
background_tasks.add_task(cleanup_memory)
|
@@ -201,14 +214,31 @@ async def predict(request: PredictionRequest, background_tasks: BackgroundTasks)
|
|
201 |
selected_model=request.model
|
202 |
)
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
except Exception as e:
|
205 |
error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
|
206 |
logger.error(error_msg)
|
|
|
|
|
|
|
207 |
raise HTTPException(status_code=500, detail=error_msg)
|
208 |
|
209 |
def cleanup_memory():
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
if __name__ == "__main__":
|
214 |
import uvicorn
|
|
|
70 |
model_path = MODELS[model_name]
|
71 |
logger.debug(f"Loading tokenizer and model from {model_path}")
|
72 |
|
|
|
73 |
tokenizer = T5Tokenizer.from_pretrained(
|
74 |
model_path,
|
75 |
token=HF_TOKEN,
|
76 |
+
use_fast=True
|
77 |
)
|
78 |
|
|
|
79 |
model = T5ForConditionalGeneration.from_pretrained(
|
80 |
model_path,
|
81 |
token=HF_TOKEN,
|
82 |
+
torch_dtype=torch.float32,
|
83 |
+
low_cpu_mem_usage=True,
|
84 |
+
device_map='auto'
|
85 |
)
|
86 |
|
87 |
model.eval()
|
88 |
+
torch.set_num_threads(6) # Number of CPUs used
|
89 |
cls._instances[model_name] = (model, tokenizer)
|
90 |
|
91 |
except Exception as e:
|
|
|
155 |
)
|
156 |
|
157 |
model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
|
158 |
+
|
159 |
+
# Add immediate cleanup of memory before generation
|
160 |
+
gc.collect()
|
161 |
+
if torch.cuda.is_available():
|
162 |
+
torch.cuda.empty_cache()
|
163 |
+
|
164 |
generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()
|
165 |
|
166 |
try:
|
|
|
188 |
)
|
189 |
|
190 |
async def generate():
|
191 |
+
try:
|
192 |
+
return model.generate(
|
193 |
+
**inputs,
|
194 |
+
**{k: v for k, v in generation_params.items() if k in [
|
195 |
+
'max_length', 'min_length', 'do_sample', 'temperature',
|
196 |
+
'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
|
197 |
+
'repetition_penalty', 'early_stopping'
|
198 |
+
]}
|
199 |
+
)
|
200 |
+
finally:
|
201 |
+
# Ensure cleanup happens even if generation fails
|
202 |
+
gc.collect()
|
203 |
+
if torch.cuda.is_available():
|
204 |
+
torch.cuda.empty_cache()
|
205 |
|
206 |
with torch.inference_mode():
|
207 |
+
outputs = await asyncio.wait_for(generate(), timeout=45.0) # Reduced timeout
|
208 |
|
209 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
210 |
background_tasks.add_task(cleanup_memory)
|
|
|
214 |
selected_model=request.model
|
215 |
)
|
216 |
|
217 |
+
except asyncio.TimeoutError:
|
218 |
+
logger.error("Generation timed out")
|
219 |
+
gc.collect()
|
220 |
+
if torch.cuda.is_available():
|
221 |
+
torch.cuda.empty_cache()
|
222 |
+
raise HTTPException(status_code=504, detail="Generation timed out")
|
223 |
except Exception as e:
|
224 |
error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
|
225 |
logger.error(error_msg)
|
226 |
+
gc.collect()
|
227 |
+
if torch.cuda.is_available():
|
228 |
+
torch.cuda.empty_cache()
|
229 |
raise HTTPException(status_code=500, detail=error_msg)
|
230 |
|
231 |
def cleanup_memory():
|
232 |
+
try:
|
233 |
+
gc.collect()
|
234 |
+
if torch.cuda.is_available():
|
235 |
+
torch.cuda.empty_cache()
|
236 |
+
|
237 |
+
# Force Python garbage collection
|
238 |
+
gc.collect(generation=2)
|
239 |
+
|
240 |
+
except Exception as e:
|
241 |
+
logger.error(f"Error in cleanup: {str(e)}")
|
242 |
|
243 |
if __name__ == "__main__":
|
244 |
import uvicorn
|