Spaces:
Running
Running
File size: 7,389 Bytes
a083285 0832c91 a083285 896d563 a083285 03a6805 6988728 dc3ebef 03a6805 dc3ebef a083285 dc3ebef 6988728 03b7855 6988728 0832c91 e8a8341 a07e9cb 896d563 dc3ebef 0832c91 dc3ebef a083285 896d563 0832c91 dc3ebef 03a6805 a083285 896d563 0832c91 03a6805 0832c91 dc3ebef 03a6805 0832c91 03a6805 0832c91 03a6805 0832c91 03a6805 da1ea6b 03a6805 0832c91 03a6805 da1ea6b 03a6805 0832c91 03a6805 da1ea6b 03a6805 0832c91 03a6805 e7fa7ee 0832c91 a083285 0832c91 dc3ebef e7fa7ee e8ea95d 0832c91 df4ee6c 0832c91 dc3ebef da1ea6b e8a8341 0832c91 4524b65 da1ea6b e7fa7ee e8a8341 0832c91 a07e9cb 0832c91 a07e9cb 0832c91 a07e9cb 03a6805 0832c91 03a6805 da1ea6b 0832c91 03a6805 0832c91 03b7855 0832c91 03b7855 a083285 03b7855 0832c91 e8ea95d 0832c91 a07e9cb 0832c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
"""For specifying an LLM agent logic flow.
This is very much a prototype. It might end up merged into LynxScribe
as an "agentic logic flow". It might just get deleted.
(This is why the dependencies are left hanging.)
"""
import os
from lynxkite.core import ops
import enum
import jinja2
import json
import numpy as np
import pandas as pd
from lynxkite.core.executors import one_by_one
jinja = jinja2.Environment()
chroma_client = None
LLM_CACHE = {}
ENV = "LLM logic"
one_by_one.register(ENV)
op = ops.op_registration(ENV)
LLM_BASE_URL = os.environ.get("LLM_BASE_URL", None)
EMBEDDING_BASE_URL = os.environ.get("EMBEDDING_BASE_URL", None)
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini-2024-07-18")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
def chat(*args, **kwargs):
import openai
chat_client = openai.OpenAI(base_url=LLM_BASE_URL)
kwargs.setdefault("model", LLM_MODEL)
key = json.dumps(
{"method": "chat", "base_url": LLM_BASE_URL, "args": args, "kwargs": kwargs}
)
if key not in LLM_CACHE:
completion = chat_client.chat.completions.create(*args, **kwargs)
LLM_CACHE[key] = [c.message.content for c in completion.choices]
return LLM_CACHE[key]
def embedding(*args, **kwargs):
import openai
embedding_client = openai.OpenAI(base_url=EMBEDDING_BASE_URL)
kwargs.setdefault("model", EMBEDDING_MODEL)
key = json.dumps(
{
"method": "embedding",
"base_url": EMBEDDING_BASE_URL,
"args": args,
"kwargs": kwargs,
}
)
if key not in LLM_CACHE:
res = embedding_client.embeddings.create(*args, **kwargs)
[data] = res.data
LLM_CACHE[key] = data.embedding
return LLM_CACHE[key]
@op("Input CSV")
def input_csv(*, filename: ops.PathStr, key: str):
return pd.read_csv(filename).rename(columns={key: "text"})
@op("Input document")
def input_document(*, filename: ops.PathStr):
with open(filename) as f:
return {"text": f.read()}
@op("Input chat")
def input_chat(*, chat: str):
return {"text": chat}
@op("Split document")
def split_document(input, *, delimiter: str = "\\n\\n"):
delimiter = delimiter.encode().decode("unicode_escape")
chunks = input["text"].split(delimiter)
return pd.DataFrame(chunks, columns=["text"])
@ops.input_position(input="top")
@op("Build document graph")
def build_document_graph(input):
return [{"source": i, "target": i + 1} for i in range(len(input) - 1)]
@ops.input_position(nodes="top", edges="top")
@op("Predict links")
def predict_links(nodes, edges):
"""A placeholder for a real algorithm. For now just adds 2-hop neighbors."""
edge_map = {} # Source -> [Targets]
for edge in edges:
edge_map.setdefault(edge["source"], [])
edge_map[edge["source"]].append(edge["target"])
new_edges = []
for edge in edges:
for t in edge_map.get(edge["target"], []):
new_edges.append({"source": edge["source"], "target": t})
return edges + new_edges
@ops.input_position(nodes="top", edges="top")
@op("Add neighbors")
def add_neighbors(nodes, edges, item):
nodes = pd.DataFrame(nodes)
edges = pd.DataFrame(edges)
matches = item["rag"]
additional_matches = []
for m in matches:
node = nodes[nodes["text"] == m].index[0]
neighbors = edges[edges["source"] == node]["target"].to_list()
additional_matches.extend(nodes.loc[neighbors, "text"])
return {**item, "rag": matches + additional_matches}
@op("Create prompt")
def create_prompt(input, *, save_as="prompt", template: ops.LongStr):
assert template, (
"Please specify the template. Refer to columns using the Jinja2 syntax."
)
t = jinja.from_string(template)
prompt = t.render(**input)
return {**input, save_as: prompt}
@op("Ask LLM")
def ask_llm(input, *, accepted_regex: str = None, max_tokens: int = 100):
assert "prompt" in input, "Please create the prompt first."
options = {}
if accepted_regex:
options["extra_body"] = {
"regex": accepted_regex,
}
results = chat(
max_tokens=max_tokens,
messages=[
{"role": "user", "content": input["prompt"]},
],
**options,
)
return [{**input, "response": r} for r in results]
@op("View", view="table_view")
def view(input, *, _ctx: one_by_one.Context):
v = _ctx.last_result
if v:
columns = v["dataframes"]["df"]["columns"]
v["dataframes"]["df"]["data"].append([input[c] for c in columns])
else:
columns = [str(c) for c in input.keys() if not str(c).startswith("_")]
v = {
"dataframes": {
"df": {
"columns": columns,
"data": [[input[c] for c in columns]],
}
}
}
return v
@ops.input_position(input="right")
@ops.output_position(output="left")
@op("Loop")
def loop(input, *, max_iterations: int = 3, _ctx: one_by_one.Context):
"""Data can flow back here max_iterations-1 times."""
key = f"iterations-{_ctx.node.id}"
input[key] = input.get(key, 0) + 1
if input[key] < max_iterations:
return input
@op("Branch", outputs=["true", "false"])
def branch(input, *, expression: str):
res = eval(expression, input)
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input)
class RagEngine(enum.Enum):
Chroma = "Chroma"
Custom = "Custom"
@ops.input_position(db="top")
@op("RAG")
def rag(
input,
db,
*,
engine: RagEngine = RagEngine.Chroma,
input_field="text",
db_field="text",
num_matches: int = 10,
_ctx: one_by_one.Context,
):
global chroma_client
if engine == RagEngine.Chroma:
last = _ctx.last_result
if last:
collection = last["_collection"]
else:
collection_name = _ctx.node.id.replace(" ", "_")
if chroma_client is None:
import chromadb
chroma_client = chromadb.Client()
for c in chroma_client.list_collections():
if c.name == collection_name:
chroma_client.delete_collection(name=collection_name)
collection = chroma_client.create_collection(name=collection_name)
collection.add(
documents=[r[db_field] for r in db],
ids=[str(i) for i in range(len(db))],
)
results = collection.query(
query_texts=[input[input_field]],
n_results=num_matches,
)
results = [db[int(r)] for r in results["ids"][0]]
return {**input, "rag": results, "_collection": collection}
if engine == RagEngine.Custom:
chat = input[input_field]
embeddings = [embedding(input=[r[db_field]]) for r in db]
q = embedding(input=[chat])
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
scores = [(i, cosine_similarity(q, e)) for i, e in enumerate(embeddings)]
scores.sort(key=lambda x: -x[1])
matches = [db[i][db_field] for i, _ in scores[:num_matches]]
return {**input, "rag": matches}
@op("Run Python")
def run_python(input, *, template: str):
"""TODO: Implement."""
return input
|