Spaces:
Running
Running
Boxes for graph RAG.
Browse files- server/executors/one_by_one.py +1 -1
- server/llm_ops.py +102 -30
- server/ops.py +2 -1
server/executors/one_by_one.py
CHANGED
@@ -19,7 +19,7 @@ class Output(ops.BaseConfig):
|
|
19 |
|
20 |
|
21 |
def df_to_list(df):
|
22 |
-
return
|
23 |
|
24 |
def has_ctx(op):
|
25 |
sig = inspect.signature(op.func)
|
|
|
19 |
|
20 |
|
21 |
def df_to_list(df):
|
22 |
+
return df.to_dict(orient='records')
|
23 |
|
24 |
def has_ctx(op):
|
25 |
sig = inspect.signature(op.func)
|
server/llm_ops.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
'''For specifying an LLM agent logic flow.'''
|
2 |
from . import ops
|
3 |
import chromadb
|
|
|
4 |
import jinja2
|
5 |
import json
|
6 |
import openai
|
|
|
7 |
import pandas as pd
|
8 |
from .executors import one_by_one
|
9 |
|
10 |
-
client = openai.OpenAI(base_url="http://localhost:
|
11 |
jinja = jinja2.Environment()
|
12 |
chroma_client = chromadb.Client()
|
13 |
LLM_CACHE = {}
|
@@ -16,16 +18,71 @@ one_by_one.register(ENV)
|
|
16 |
op = ops.op_registration(ENV)
|
17 |
|
18 |
def chat(*args, **kwargs):
|
19 |
-
key = json.dumps({'args': args, 'kwargs': kwargs})
|
20 |
if key not in LLM_CACHE:
|
21 |
completion = client.chat.completions.create(*args, **kwargs)
|
22 |
LLM_CACHE[key] = [c.message.content for c in completion.choices]
|
23 |
return LLM_CACHE[key]
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return pd.read_csv(filename).rename(columns={key: 'text'})
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@op("Create prompt")
|
30 |
def create_prompt(input, *, save_as='prompt', template: ops.LongStr):
|
31 |
assert template, 'Please specify the template. Refer to columns using the Jinja2 syntax.'
|
@@ -83,35 +140,50 @@ def branch(input, *, expression: str):
|
|
83 |
res = eval(expression, input)
|
84 |
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input)
|
85 |
|
|
|
|
|
|
|
|
|
86 |
@ops.input_position(db="top")
|
87 |
@op('RAG')
|
88 |
-
def rag(
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
@op('Run Python')
|
110 |
def run_python(input, *, template: str):
|
111 |
-
|
112 |
-
|
113 |
-
for k, v in input.items():
|
114 |
-
p = p.replace(k.upper(), str(v))
|
115 |
-
return p
|
116 |
-
|
117 |
-
|
|
|
1 |
'''For specifying an LLM agent logic flow.'''
|
2 |
from . import ops
|
3 |
import chromadb
|
4 |
+
import enum
|
5 |
import jinja2
|
6 |
import json
|
7 |
import openai
|
8 |
+
import numpy as np
|
9 |
import pandas as pd
|
10 |
from .executors import one_by_one
|
11 |
|
12 |
+
client = openai.OpenAI(base_url="http://localhost:7997/")
|
13 |
jinja = jinja2.Environment()
|
14 |
chroma_client = chromadb.Client()
|
15 |
LLM_CACHE = {}
|
|
|
18 |
op = ops.op_registration(ENV)
|
19 |
|
20 |
def chat(*args, **kwargs):
|
21 |
+
key = json.dumps({'method': 'chat', 'args': args, 'kwargs': kwargs})
|
22 |
if key not in LLM_CACHE:
|
23 |
completion = client.chat.completions.create(*args, **kwargs)
|
24 |
LLM_CACHE[key] = [c.message.content for c in completion.choices]
|
25 |
return LLM_CACHE[key]
|
26 |
|
27 |
+
def embedding(*args, **kwargs):
|
28 |
+
key = json.dumps({'method': 'embedding', 'args': args, 'kwargs': kwargs})
|
29 |
+
if key not in LLM_CACHE:
|
30 |
+
res = client.embeddings.create(*args, **kwargs)
|
31 |
+
[data] = res.data
|
32 |
+
LLM_CACHE[key] = data.embedding
|
33 |
+
return LLM_CACHE[key]
|
34 |
+
|
35 |
+
@op("Input CSV")
|
36 |
+
def input_csv(*, filename: ops.PathStr, key: str):
|
37 |
return pd.read_csv(filename).rename(columns={key: 'text'})
|
38 |
|
39 |
+
@op("Input document")
|
40 |
+
def input_document(*, filename: ops.PathStr):
|
41 |
+
with open(filename) as f:
|
42 |
+
return {'text': f.read()}
|
43 |
+
|
44 |
+
@op("Input chat")
|
45 |
+
def input_chat(*, chat: str):
|
46 |
+
return {'text': chat}
|
47 |
+
|
48 |
+
@op("Split document")
|
49 |
+
def split_document(input, *, delimiter: str = '\\n\\n'):
|
50 |
+
delimiter = delimiter.encode().decode('unicode_escape')
|
51 |
+
chunks = input['text'].split(delimiter)
|
52 |
+
return pd.DataFrame(chunks, columns=['text'])
|
53 |
+
|
54 |
+
@ops.input_position(input="top")
|
55 |
+
@op("Build document graph")
|
56 |
+
def build_document_graph(input):
|
57 |
+
chunks = input['text']
|
58 |
+
return pd.DataFrame([{'source': i, 'target': i+1} for i in range(len(chunks)-1)]),
|
59 |
+
|
60 |
+
@ops.input_position(nodes="top", edges="top")
|
61 |
+
@op("Predict links")
|
62 |
+
def predict_links(nodes, edges):
|
63 |
+
'''A placeholder for a real algorithm. For now just adds 2-hop neighbors.'''
|
64 |
+
edges = edges.to_dict(orient='records')
|
65 |
+
edge_map = {} # Source -> [Targets]
|
66 |
+
for edge in edges:
|
67 |
+
edge_map.setdefault(edge['source'], [])
|
68 |
+
edge_map[edge['source']].append(edge['target'])
|
69 |
+
new_edges = []
|
70 |
+
for source, target in edges.items():
|
71 |
+
for t in edge_map.get(target, []):
|
72 |
+
new_edges.append({'source': source, 'target': t})
|
73 |
+
return pd.DataFrame(edges.append(new_edges))
|
74 |
+
|
75 |
+
@ops.input_position(nodes="top", edges="top")
|
76 |
+
@op("Add neighbors")
|
77 |
+
def add_neighbors(nodes, edges, item):
|
78 |
+
matches = item['rag']
|
79 |
+
additional_matches = []
|
80 |
+
for m in matches:
|
81 |
+
node = nodes[nodes['text'] == m].index[0]
|
82 |
+
neighbors = edges[edges['source'] == node]['target']
|
83 |
+
additional_matches.extend(nodes.loc[neighbors, 'text'])
|
84 |
+
return {**item, 'rag': matches + additional_matches}
|
85 |
+
|
86 |
@op("Create prompt")
|
87 |
def create_prompt(input, *, save_as='prompt', template: ops.LongStr):
|
88 |
assert template, 'Please specify the template. Refer to columns using the Jinja2 syntax.'
|
|
|
140 |
res = eval(expression, input)
|
141 |
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input)
|
142 |
|
143 |
+
class RagEngine(enum.Enum):
|
144 |
+
Chroma = 'Chroma'
|
145 |
+
Custom = 'Custom'
|
146 |
+
|
147 |
@ops.input_position(db="top")
|
148 |
@op('RAG')
|
149 |
+
def rag(
|
150 |
+
input, db, *,
|
151 |
+
engine: RagEngine = RagEngine.Chroma,
|
152 |
+
input_field='text', db_field='text', num_matches: int = 10,
|
153 |
+
_ctx: one_by_one.Context):
|
154 |
+
if engine == RagEngine.Chroma:
|
155 |
+
last = _ctx.last_result
|
156 |
+
if last:
|
157 |
+
collection = last['_collection']
|
158 |
+
else:
|
159 |
+
collection_name = _ctx.node.id.replace(' ', '_')
|
160 |
+
for c in chroma_client.list_collections():
|
161 |
+
if c.name == collection_name:
|
162 |
+
chroma_client.delete_collection(name=collection_name)
|
163 |
+
collection = chroma_client.create_collection(name=collection_name)
|
164 |
+
collection.add(
|
165 |
+
documents=[r[db_field] for r in db],
|
166 |
+
ids=[str(i) for i in range(len(db))],
|
167 |
+
)
|
168 |
+
results = collection.query(
|
169 |
+
query_texts=[input[input_field]],
|
170 |
+
n_results=num_matches,
|
171 |
)
|
172 |
+
results = [db[int(r)] for r in results['ids'][0]]
|
173 |
+
return {**input, 'rag': results, '_collection': collection}
|
174 |
+
if engine == RagEngine.Custom:
|
175 |
+
model = 'google/gemma-2-2b-it'
|
176 |
+
chat = input[input_field]
|
177 |
+
embeddings = [embedding(input=[r[db_field]], model=model) for r in db]
|
178 |
+
q = embedding(input=[chat], model=model)
|
179 |
+
def cosine_similarity(a, b):
|
180 |
+
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
181 |
+
scores = [(i, cosine_similarity(q, e)) for i, e in enumerate(embeddings)]
|
182 |
+
scores.sort(key=lambda x: -x[1])
|
183 |
+
matches = [db[i][db_field] for i, _ in scores[:num_matches]]
|
184 |
+
return {**input, 'rag': matches}
|
185 |
|
186 |
@op('Run Python')
|
187 |
def run_python(input, *, template: str):
|
188 |
+
'''TODO: Implement.'''
|
189 |
+
return input
|
|
|
|
|
|
|
|
|
|
server/ops.py
CHANGED
@@ -98,11 +98,12 @@ class Op(BaseConfig):
|
|
98 |
params[p] = int(params[p])
|
99 |
elif self.params[p].type == float:
|
100 |
params[p] = float(params[p])
|
|
|
|
|
101 |
res = self.func(*inputs, **params)
|
102 |
return res
|
103 |
|
104 |
|
105 |
-
|
106 |
def op(env: str, name: str, *, view='basic', sub_nodes=None, outputs=None):
|
107 |
'''Decorator for defining an operation.'''
|
108 |
def decorator(func):
|
|
|
98 |
params[p] = int(params[p])
|
99 |
elif self.params[p].type == float:
|
100 |
params[p] = float(params[p])
|
101 |
+
elif isinstance(self.params[p].type, enum.EnumMeta):
|
102 |
+
params[p] = self.params[p].type[params[p]]
|
103 |
res = self.func(*inputs, **params)
|
104 |
return res
|
105 |
|
106 |
|
|
|
107 |
def op(env: str, name: str, *, view='basic', sub_nodes=None, outputs=None):
|
108 |
'''Decorator for defining an operation.'''
|
109 |
def decorator(func):
|