Spaces:
Running
Running
Split one-by-one executor into separate module.
Browse files- server/executors/one_by_one.py +125 -0
- server/llm_ops.py +6 -119
server/executors/one_by_one.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .. import ops
|
| 2 |
+
from .. import workspace
|
| 3 |
+
import fastapi
|
| 4 |
+
import json
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import traceback
|
| 7 |
+
import inspect
|
| 8 |
+
import typing
|
| 9 |
+
|
| 10 |
+
class Context(ops.BaseConfig):
|
| 11 |
+
'''Passed to operation functions as "_ctx" if they have such a parameter.'''
|
| 12 |
+
node: workspace.WorkspaceNode
|
| 13 |
+
last_result: typing.Any = None
|
| 14 |
+
|
| 15 |
+
class Output(ops.BaseConfig):
|
| 16 |
+
'''Return this to send values to specific outputs of a node.'''
|
| 17 |
+
output_handle: str
|
| 18 |
+
value: dict
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def df_to_list(df):
|
| 22 |
+
return [dict(zip(df.columns, row)) for row in df.values]
|
| 23 |
+
|
| 24 |
+
def has_ctx(op):
|
| 25 |
+
sig = inspect.signature(op.func)
|
| 26 |
+
return '_ctx' in sig.parameters
|
| 27 |
+
|
| 28 |
+
def register(env: str):
|
| 29 |
+
'''Registers the one-by-one executor.'''
|
| 30 |
+
ops.EXECUTORS[env] = execute
|
| 31 |
+
|
| 32 |
+
def get_stages(ws, catalog):
|
| 33 |
+
'''Inputs on top are batch inputs. We decompose the graph into a DAG of components along these edges.'''
|
| 34 |
+
nodes = {n.id: n for n in ws.nodes}
|
| 35 |
+
batch_inputs = {}
|
| 36 |
+
inputs = {}
|
| 37 |
+
for edge in ws.edges:
|
| 38 |
+
inputs.setdefault(edge.target, []).append(edge.source)
|
| 39 |
+
node = nodes[edge.target]
|
| 40 |
+
op = catalog[node.data.title]
|
| 41 |
+
i = op.inputs[edge.targetHandle]
|
| 42 |
+
if i.position == 'top':
|
| 43 |
+
batch_inputs.setdefault(edge.target, []).append(edge.source)
|
| 44 |
+
stages = []
|
| 45 |
+
for bt, bss in batch_inputs.items():
|
| 46 |
+
upstream = set(bss)
|
| 47 |
+
new = set(bss)
|
| 48 |
+
while new:
|
| 49 |
+
n = new.pop()
|
| 50 |
+
for i in inputs.get(n, []):
|
| 51 |
+
if i not in upstream:
|
| 52 |
+
upstream.add(i)
|
| 53 |
+
new.add(i)
|
| 54 |
+
stages.append(upstream)
|
| 55 |
+
stages.sort(key=lambda s: len(s))
|
| 56 |
+
stages.append(set(nodes))
|
| 57 |
+
return stages
|
| 58 |
+
|
| 59 |
+
EXECUTOR_OUTPUT_CACHE = {}
|
| 60 |
+
|
| 61 |
+
def execute(ws, catalog, cache=None):
|
| 62 |
+
nodes = {n.id: n for n in ws.nodes}
|
| 63 |
+
contexts = {n.id: Context(node=n) for n in ws.nodes}
|
| 64 |
+
edges = {n.id: [] for n in ws.nodes}
|
| 65 |
+
for e in ws.edges:
|
| 66 |
+
edges[e.source].append(e)
|
| 67 |
+
tasks = {}
|
| 68 |
+
NO_INPUT = object() # Marker for initial tasks.
|
| 69 |
+
for node in ws.nodes:
|
| 70 |
+
node.data.error = None
|
| 71 |
+
op = catalog[node.data.title]
|
| 72 |
+
# Start tasks for nodes that have no inputs.
|
| 73 |
+
if not op.inputs:
|
| 74 |
+
tasks[node.id] = [NO_INPUT]
|
| 75 |
+
batch_inputs = {}
|
| 76 |
+
# Run the rest until we run out of tasks.
|
| 77 |
+
for stage in get_stages(ws, catalog):
|
| 78 |
+
next_stage = {}
|
| 79 |
+
while tasks:
|
| 80 |
+
n, ts = tasks.popitem()
|
| 81 |
+
if n not in stage:
|
| 82 |
+
next_stage.setdefault(n, []).extend(ts)
|
| 83 |
+
continue
|
| 84 |
+
node = nodes[n]
|
| 85 |
+
data = node.data
|
| 86 |
+
op = catalog[data.title]
|
| 87 |
+
params = {**data.params}
|
| 88 |
+
if has_ctx(op):
|
| 89 |
+
params['_ctx'] = contexts[node.id]
|
| 90 |
+
results = []
|
| 91 |
+
for task in ts:
|
| 92 |
+
try:
|
| 93 |
+
inputs = [
|
| 94 |
+
batch_inputs[(n, i.name)] if i.position == 'top' else task
|
| 95 |
+
for i in op.inputs.values()]
|
| 96 |
+
key = json.dumps(fastapi.encoders.jsonable_encoder((inputs, params)))
|
| 97 |
+
if cache:
|
| 98 |
+
if key not in cache:
|
| 99 |
+
cache[key] = op.func(*inputs, **params)
|
| 100 |
+
result = cache[key]
|
| 101 |
+
else:
|
| 102 |
+
result = op.func(*inputs, **params)
|
| 103 |
+
except Exception as e:
|
| 104 |
+
traceback.print_exc()
|
| 105 |
+
data.error = str(e)
|
| 106 |
+
break
|
| 107 |
+
contexts[node.id].last_result = result
|
| 108 |
+
# Returned lists and DataFrames are considered multiple tasks.
|
| 109 |
+
if isinstance(result, pd.DataFrame):
|
| 110 |
+
result = df_to_list(result)
|
| 111 |
+
elif not isinstance(result, list):
|
| 112 |
+
result = [result]
|
| 113 |
+
results.extend(result)
|
| 114 |
+
else: # Finished all tasks without errors.
|
| 115 |
+
if op.type == 'visualization' or op.type == 'table_view':
|
| 116 |
+
data.display = results[0]
|
| 117 |
+
for edge in edges[node.id]:
|
| 118 |
+
t = nodes[edge.target]
|
| 119 |
+
op = catalog[t.data.title]
|
| 120 |
+
i = op.inputs[edge.targetHandle]
|
| 121 |
+
if i.position == 'top':
|
| 122 |
+
batch_inputs.setdefault((edge.target, edge.targetHandle), []).extend(results)
|
| 123 |
+
else:
|
| 124 |
+
tasks.setdefault(edge.target, []).extend(results)
|
| 125 |
+
tasks = next_stage
|
server/llm_ops.py
CHANGED
|
@@ -1,33 +1,20 @@
|
|
| 1 |
'''For specifying an LLM agent logic flow.'''
|
| 2 |
from . import ops
|
| 3 |
import chromadb
|
| 4 |
-
import fastapi.encoders
|
| 5 |
-
import inspect
|
| 6 |
import jinja2
|
| 7 |
import json
|
| 8 |
import openai
|
| 9 |
import pandas as pd
|
| 10 |
-
import
|
| 11 |
-
import typing
|
| 12 |
-
from . import workspace
|
| 13 |
|
| 14 |
client = openai.OpenAI(base_url="http://localhost:11434/v1")
|
| 15 |
jinja = jinja2.Environment()
|
| 16 |
chroma_client = chromadb.Client()
|
| 17 |
LLM_CACHE = {}
|
| 18 |
ENV = 'LLM logic'
|
|
|
|
| 19 |
op = ops.op_registration(ENV)
|
| 20 |
|
| 21 |
-
class Context(ops.BaseConfig):
|
| 22 |
-
'''Passed to operation functions as "_ctx" if they have such a parameter.'''
|
| 23 |
-
node: workspace.WorkspaceNode
|
| 24 |
-
last_result: typing.Any = None
|
| 25 |
-
|
| 26 |
-
class Output(ops.BaseConfig):
|
| 27 |
-
'''Return this to send values to specific outputs of a node.'''
|
| 28 |
-
output_handle: str
|
| 29 |
-
value: dict
|
| 30 |
-
|
| 31 |
def chat(*args, **kwargs):
|
| 32 |
key = json.dumps({'args': args, 'kwargs': kwargs})
|
| 33 |
if key not in LLM_CACHE:
|
|
@@ -66,7 +53,7 @@ def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int =
|
|
| 66 |
return [{**input, 'response': r} for r in results]
|
| 67 |
|
| 68 |
@op("View", view="table_view")
|
| 69 |
-
def view(input, *, _ctx: Context):
|
| 70 |
v = _ctx.last_result
|
| 71 |
if v:
|
| 72 |
columns = v['dataframes']['df']['columns']
|
|
@@ -84,7 +71,7 @@ def view(input, *, _ctx: Context):
|
|
| 84 |
@ops.input_position(input="right")
|
| 85 |
@ops.output_position(output="left")
|
| 86 |
@op("Loop")
|
| 87 |
-
def loop(input, *, max_iterations: int = 3, _ctx: Context):
|
| 88 |
'''Data can flow back here max_iterations-1 times.'''
|
| 89 |
key = f'iterations-{_ctx.node.id}'
|
| 90 |
input[key] = input.get(key, 0) + 1
|
|
@@ -94,11 +81,11 @@ def loop(input, *, max_iterations: int = 3, _ctx: Context):
|
|
| 94 |
@op('Branch', outputs=['true', 'false'])
|
| 95 |
def branch(input, *, expression: str):
|
| 96 |
res = eval(expression, input)
|
| 97 |
-
return Output(output_handle=str(bool(res)).lower(), value=input)
|
| 98 |
|
| 99 |
@ops.input_position(db="top")
|
| 100 |
@op('RAG')
|
| 101 |
-
def rag(input, db, *, input_field='text', db_field='text', num_matches: int=10, _ctx: Context):
|
| 102 |
last = _ctx.last_result
|
| 103 |
if last:
|
| 104 |
collection = last['_collection']
|
|
@@ -127,104 +114,4 @@ def run_python(input, *, template: str):
|
|
| 127 |
p = p.replace(k.upper(), str(v))
|
| 128 |
return p
|
| 129 |
|
| 130 |
-
EXECUTOR_OUTPUT_CACHE = {}
|
| 131 |
-
|
| 132 |
-
@ops.register_executor(ENV)
|
| 133 |
-
def execute(ws):
|
| 134 |
-
catalog = ops.CATALOGS[ENV]
|
| 135 |
-
nodes = {n.id: n for n in ws.nodes}
|
| 136 |
-
contexts = {n.id: Context(node=n) for n in ws.nodes}
|
| 137 |
-
edges = {n.id: [] for n in ws.nodes}
|
| 138 |
-
for e in ws.edges:
|
| 139 |
-
edges[e.source].append(e)
|
| 140 |
-
tasks = {}
|
| 141 |
-
NO_INPUT = object() # Marker for initial tasks.
|
| 142 |
-
for node in ws.nodes:
|
| 143 |
-
node.data.error = None
|
| 144 |
-
op = catalog[node.data.title]
|
| 145 |
-
# Start tasks for nodes that have no inputs.
|
| 146 |
-
if not op.inputs:
|
| 147 |
-
tasks[node.id] = [NO_INPUT]
|
| 148 |
-
batch_inputs = {}
|
| 149 |
-
# Run the rest until we run out of tasks.
|
| 150 |
-
for stage in get_stages(ws):
|
| 151 |
-
next_stage = {}
|
| 152 |
-
while tasks:
|
| 153 |
-
n, ts = tasks.popitem()
|
| 154 |
-
if n not in stage:
|
| 155 |
-
next_stage.setdefault(n, []).extend(ts)
|
| 156 |
-
continue
|
| 157 |
-
node = nodes[n]
|
| 158 |
-
data = node.data
|
| 159 |
-
op = catalog[data.title]
|
| 160 |
-
params = {**data.params}
|
| 161 |
-
if has_ctx(op):
|
| 162 |
-
params['_ctx'] = contexts[node.id]
|
| 163 |
-
results = []
|
| 164 |
-
for task in ts:
|
| 165 |
-
try:
|
| 166 |
-
inputs = [
|
| 167 |
-
batch_inputs[(n, i.name)] if i.position == 'top' else task
|
| 168 |
-
for i in op.inputs.values()]
|
| 169 |
-
key = json.dumps(fastapi.encoders.jsonable_encoder((inputs, params)))
|
| 170 |
-
if key not in EXECUTOR_OUTPUT_CACHE:
|
| 171 |
-
EXECUTOR_OUTPUT_CACHE[key] = op.func(*inputs, **params)
|
| 172 |
-
result = EXECUTOR_OUTPUT_CACHE[key]
|
| 173 |
-
except Exception as e:
|
| 174 |
-
traceback.print_exc()
|
| 175 |
-
data.error = str(e)
|
| 176 |
-
break
|
| 177 |
-
contexts[node.id].last_result = result
|
| 178 |
-
# Returned lists and DataFrames are considered multiple tasks.
|
| 179 |
-
if isinstance(result, pd.DataFrame):
|
| 180 |
-
result = df_to_list(result)
|
| 181 |
-
elif not isinstance(result, list):
|
| 182 |
-
result = [result]
|
| 183 |
-
results.extend(result)
|
| 184 |
-
else: # Finished all tasks without errors.
|
| 185 |
-
if op.type == 'visualization' or op.type == 'table_view':
|
| 186 |
-
data.display = results[0]
|
| 187 |
-
for edge in edges[node.id]:
|
| 188 |
-
t = nodes[edge.target]
|
| 189 |
-
op = catalog[t.data.title]
|
| 190 |
-
i = op.inputs[edge.targetHandle]
|
| 191 |
-
if i.position == 'top':
|
| 192 |
-
batch_inputs.setdefault((edge.target, edge.targetHandle), []).extend(results)
|
| 193 |
-
else:
|
| 194 |
-
tasks.setdefault(edge.target, []).extend(results)
|
| 195 |
-
tasks = next_stage
|
| 196 |
-
|
| 197 |
-
def df_to_list(df):
|
| 198 |
-
return [dict(zip(df.columns, row)) for row in df.values]
|
| 199 |
-
|
| 200 |
-
def has_ctx(op):
|
| 201 |
-
sig = inspect.signature(op.func)
|
| 202 |
-
return '_ctx' in sig.parameters
|
| 203 |
|
| 204 |
-
def get_stages(ws):
|
| 205 |
-
'''Inputs on top are batch inputs. We decompose the graph into a DAG of components along these edges.'''
|
| 206 |
-
catalog = ops.CATALOGS[ENV]
|
| 207 |
-
nodes = {n.id: n for n in ws.nodes}
|
| 208 |
-
batch_inputs = {}
|
| 209 |
-
inputs = {}
|
| 210 |
-
for edge in ws.edges:
|
| 211 |
-
inputs.setdefault(edge.target, []).append(edge.source)
|
| 212 |
-
node = nodes[edge.target]
|
| 213 |
-
op = catalog[node.data.title]
|
| 214 |
-
i = op.inputs[edge.targetHandle]
|
| 215 |
-
if i.position == 'top':
|
| 216 |
-
batch_inputs.setdefault(edge.target, []).append(edge.source)
|
| 217 |
-
stages = []
|
| 218 |
-
for bt, bss in batch_inputs.items():
|
| 219 |
-
upstream = set(bss)
|
| 220 |
-
new = set(bss)
|
| 221 |
-
while new:
|
| 222 |
-
n = new.pop()
|
| 223 |
-
for i in inputs.get(n, []):
|
| 224 |
-
if i not in upstream:
|
| 225 |
-
upstream.add(i)
|
| 226 |
-
new.add(i)
|
| 227 |
-
stages.append(upstream)
|
| 228 |
-
stages.sort(key=lambda s: len(s))
|
| 229 |
-
stages.append(set(nodes))
|
| 230 |
-
return stages
|
|
|
|
| 1 |
'''For specifying an LLM agent logic flow.'''
|
| 2 |
from . import ops
|
| 3 |
import chromadb
|
|
|
|
|
|
|
| 4 |
import jinja2
|
| 5 |
import json
|
| 6 |
import openai
|
| 7 |
import pandas as pd
|
| 8 |
+
from .executors import one_by_one
|
|
|
|
|
|
|
| 9 |
|
| 10 |
client = openai.OpenAI(base_url="http://localhost:11434/v1")
|
| 11 |
jinja = jinja2.Environment()
|
| 12 |
chroma_client = chromadb.Client()
|
| 13 |
LLM_CACHE = {}
|
| 14 |
ENV = 'LLM logic'
|
| 15 |
+
one_by_one.register(ENV)
|
| 16 |
op = ops.op_registration(ENV)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def chat(*args, **kwargs):
|
| 19 |
key = json.dumps({'args': args, 'kwargs': kwargs})
|
| 20 |
if key not in LLM_CACHE:
|
|
|
|
| 53 |
return [{**input, 'response': r} for r in results]
|
| 54 |
|
| 55 |
@op("View", view="table_view")
|
| 56 |
+
def view(input, *, _ctx: one_by_one.Context):
|
| 57 |
v = _ctx.last_result
|
| 58 |
if v:
|
| 59 |
columns = v['dataframes']['df']['columns']
|
|
|
|
| 71 |
@ops.input_position(input="right")
|
| 72 |
@ops.output_position(output="left")
|
| 73 |
@op("Loop")
|
| 74 |
+
def loop(input, *, max_iterations: int = 3, _ctx: one_by_one.Context):
|
| 75 |
'''Data can flow back here max_iterations-1 times.'''
|
| 76 |
key = f'iterations-{_ctx.node.id}'
|
| 77 |
input[key] = input.get(key, 0) + 1
|
|
|
|
| 81 |
@op('Branch', outputs=['true', 'false'])
|
| 82 |
def branch(input, *, expression: str):
|
| 83 |
res = eval(expression, input)
|
| 84 |
+
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input)
|
| 85 |
|
| 86 |
@ops.input_position(db="top")
|
| 87 |
@op('RAG')
|
| 88 |
+
def rag(input, db, *, input_field='text', db_field='text', num_matches: int=10, _ctx: one_by_one.Context):
|
| 89 |
last = _ctx.last_result
|
| 90 |
if last:
|
| 91 |
collection = last['_collection']
|
|
|
|
| 114 |
p = p.replace(k.upper(), str(v))
|
| 115 |
return p
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|