darabos commited on
Commit
e8ea95d
·
1 Parent(s): 896d563

Use environment variables for selecting the models.

Browse files
examples/Graph RAG CHANGED
@@ -510,8 +510,7 @@
510
  "title": "Ask LLM",
511
  "params": {
512
  "max_tokens": 100.0,
513
- "accepted_regex": "",
514
- "model": "SultanR/SmolTulu-1.7b-Instruct"
515
  },
516
  "display": null,
517
  "error": null,
@@ -541,13 +540,6 @@
541
  "type": {
542
  "type": "<class 'int'>"
543
  }
544
- },
545
- "model": {
546
- "type": {
547
- "type": "<class 'str'>"
548
- },
549
- "default": null,
550
- "name": "model"
551
  }
552
  },
553
  "outputs": {
 
510
  "title": "Ask LLM",
511
  "params": {
512
  "max_tokens": 100.0,
513
+ "accepted_regex": ""
 
514
  },
515
  "display": null,
516
  "error": null,
 
540
  "type": {
541
  "type": "<class 'int'>"
542
  }
 
 
 
 
 
 
 
543
  }
544
  },
545
  "outputs": {
lynxkite-lynxscribe/README.md CHANGED
@@ -23,5 +23,9 @@ uv pip install infinity-emb[all]
23
  infinity_emb v2 --model-id michaelfeil/bge-small-en-v1.5
24
  uv pip install "sglang[all]>=0.4.2.post2" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer/
25
  python -m sglang.launch_server --model-path SultanR/SmolTulu-1.7b-Instruct --port 8080
26
- LLM_BASE_URL='http://localhost:8080/v1' EMBEDDING_BASE_URL='http://localhost:7997/' lynxkite
 
 
 
 
27
  ```
 
23
  infinity_emb v2 --model-id michaelfeil/bge-small-en-v1.5
24
  uv pip install "sglang[all]>=0.4.2.post2" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer/
25
  python -m sglang.launch_server --model-path SultanR/SmolTulu-1.7b-Instruct --port 8080
26
+ export LLM_BASE_URL='http://localhost:8080/v1'
27
+ export LLM_MODEL='SultanR/SmolTulu-1.7b-Instruct'
28
+ export EMBEDDING_BASE_URL='http://localhost:7997/'
29
+ export EMBEDDING_MODEL='michaelfeil/bge-small-en-v1.5'
30
+ lynxkite
31
  ```
lynxkite-lynxscribe/src/lynxkite_lynxscribe/llm_ops.py CHANGED
@@ -130,8 +130,7 @@ def create_prompt(input, *, save_as="prompt", template: ops.LongStr):
130
 
131
 
132
  @op("Ask LLM")
133
- def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int = 100):
134
- assert model, "Please specify the model."
135
  assert "prompt" in input, "Please create the prompt first."
136
  options = {}
137
  if accepted_regex:
@@ -139,7 +138,6 @@ def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int =
139
  "regex": accepted_regex,
140
  }
141
  results = chat(
142
- model=model,
143
  max_tokens=max_tokens,
144
  messages=[
145
  {"role": "user", "content": input["prompt"]},
@@ -228,10 +226,9 @@ def rag(
228
  results = [db[int(r)] for r in results["ids"][0]]
229
  return {**input, "rag": results, "_collection": collection}
230
  if engine == RagEngine.Custom:
231
- model = "michaelfeil/bge-small-en-v1.5"
232
  chat = input[input_field]
233
- embeddings = [embedding(input=[r[db_field]], model=model) for r in db]
234
- q = embedding(input=[chat], model=model)
235
 
236
  def cosine_similarity(a, b):
237
  return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
 
130
 
131
 
132
  @op("Ask LLM")
133
+ def ask_llm(input, *, accepted_regex: str = None, max_tokens: int = 100):
 
134
  assert "prompt" in input, "Please create the prompt first."
135
  options = {}
136
  if accepted_regex:
 
138
  "regex": accepted_regex,
139
  }
140
  results = chat(
 
141
  max_tokens=max_tokens,
142
  messages=[
143
  {"role": "user", "content": input["prompt"]},
 
226
  results = [db[int(r)] for r in results["ids"][0]]
227
  return {**input, "rag": results, "_collection": collection}
228
  if engine == RagEngine.Custom:
 
229
  chat = input[input_field]
230
+ embeddings = [embedding(input=[r[db_field]]) for r in db]
231
+ q = embedding(input=[chat])
232
 
233
  def cosine_similarity(a, b):
234
  return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))