Spaces:
Sleeping
Sleeping
File size: 4,817 Bytes
8ab94bb f21cc03 8ab94bb d666f15 8ab94bb d666f15 8eb4c63 d666f15 8eb4c63 f21cc03 608f6fc f21cc03 608f6fc d666f15 608f6fc d666f15 608f6fc d666f15 608f6fc d666f15 f21cc03 608f6fc f21cc03 d666f15 f21cc03 d666f15 f21cc03 cb3fbdc f21cc03 8ea55d3 f21cc03 8ab94bb f21cc03 914eb81 8ab94bb f21cc03 8ab94bb 914eb81 cb3fbdc f21cc03 8ab94bb f21cc03 28d01e2 f21cc03 8ab94bb f21cc03 8ea55d3 f21cc03 8ab94bb cb3fbdc 8ab94bb cf83b7c fbf28e6 d666f15 8ab94bb d666f15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
import cv2
import numpy as np
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import base64
from PIL import Image
from io import BytesIO
import torch
import clip
# Load the segmentation model
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
# Load the CLIP model
model, preprocess = clip.load("ViT-B/32")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device).eval()
def find_similarity(base64_image, text_input):
try:
# Decode the base64 image to bytes
image_bytes = base64.b64decode(base64_image)
# Convert the bytes to a PIL image
image = Image.open(BytesIO(image_bytes))
# Preprocess the image
image = preprocess(image).unsqueeze(0).to(device)
# Prepare input text
text_tokens = clip.tokenize([text_input]).to(device)
# Encode image and text features
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text_tokens)
# Normalize features and calculate similarity
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()
return similarity
except Exception as e:
return str(e)
# Define a function for image segmentation
def segment_image(input_image, text_input):
image_bytes = base64.b64decode(input_image)
image = Image.open(BytesIO(image_bytes))
# Convert the image to a numpy array
image = np.array(image)
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
segmented_regions = [] # List to store segmented regions with similarity scores
for i, mask_dict in enumerate(masks):
mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
# Create a mask with the same shape as the original image
mask = np.zeros_like(image)
mask[:, :] = mask_data[:, :, np.newaxis]
# Apply the mask to the original image
segmented_region = cv2.bitwise_and(image, mask)
x, y, w, h = map(int, mask_dict['bbox'])
cropped_region = segmented_region[y:y+h, x:x+w]
# Convert to base64 image
_, buffer = cv2.imencode(".png", cropped_region)
segmented_image_base64 = base64.b64encode(buffer).decode()
# Calculate similarity for the segmented image
similarity = find_similarity(segmented_image_base64, text_input)
# Append the segmented image and its similarity score
segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
# Sort the segmented images by similarity in descending order
segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
# Return the segmented images in descending order of similarity
return segmented_regions
# def segment_image(input_image, text_input):
# image_bytes = base64.b64decode(input_image)
# image = Image.open(BytesIO(image_bytes))
# image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
# mask_generator = SamAutomaticMaskGenerator(sam)
# masks = mask_generator.generate(image)
# segmented_regions = [] # List to store segmented regions with similarity scores
# for i, mask_dict in enumerate(masks):
# mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
# segmented_region = cv2.bitwise_and(image, image, mask=mask_data)
# x, y, w, h = map(int, mask_dict['bbox'])
# cropped_region = segmented_region[y:y+h, x:x+w]
# # Convert to base64 image
# _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
# segmented_image_base64 = base64.b64encode(buffer).decode()
# # Calculate similarity for the segmented image
# similarity = find_similarity(segmented_image_base64, text_input)
# # Append the segmented image and its similarity score
# segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})
# # Sort the segmented images by similarity in descending order
# segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)
# # Return the segmented images in descending order of similarity
# return segmented_regions
# Create Gradio components
input_image = gr.Textbox(label="Base64 Image", lines=8)
text_input = gr.Textbox(label="Text Input") # Use Textbox with a label
output_images = gr.outputs.JSON()
# Create a Gradio interface
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=output_images).launch()
|