Spaces:
Runtime error
Runtime error
File size: 8,724 Bytes
dc428aa ed5c13a dc428aa ed5c13a 1ef76af ed5c13a 1ef76af ed5c13a dc428aa ed5c13a dc428aa a77b32c dc428aa a77b32c dc428aa a77b32c dc428aa a77b32c 1ef76af dc428aa a77b32c dc428aa 1ef76af dc428aa 1ef76af dc428aa ed5c13a dc428aa ed5c13a 1ef76af ed5c13a a77b32c ed5c13a a77b32c ed5c13a dc428aa ed5c13a dc428aa ed5c13a dc428aa ed5c13a dc428aa ed5c13a 1ef76af ed5c13a dc428aa ed5c13a dc428aa a77b32c ed5c13a dc428aa ed5c13a dc428aa ed5c13a dc428aa ed5c13a dc428aa ed5c13a a77b32c ed5c13a a77b32c dc428aa ed5c13a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import nest_asyncio
nest_asyncio.apply()
import os
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
from math import atan2, degrees
import asyncio
from pyppeteer import launch
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key if needed
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2
# ----------------------------
# Asynchronous function to generate handwriting image via Pyppeteer
# ----------------------------
async def _generate_handwriting_image(text_prompt, screenshot_path):
"""
Launches a headless browser, goes to Calligraphr, types the text,
and takes a screenshot of the rendered handwriting.
"""
# Launch Chromium with additional flags for containerized environments
browser = await launch(
headless=True,
handleSIGINT=False,
handleSIGTERM=False,
handleSIGHUP=False,
args=[
'--no-sandbox',
'--disable-setuid-sandbox',
'--disable-dev-shm-usage',
'--disable-gpu',
'--single-process',
'--no-zygote',
'--window-size=1920,1080'
]
)
try:
page = await browser.newPage()
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
await page.waitForSelector('#text-input')
await page.type('#text-input', text_prompt)
# Give the page time to render the handwriting
await asyncio.sleep(3)
# Screenshot a portion of the page that should contain the handwriting
await page.screenshot({
'path': screenshot_path,
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
})
return screenshot_path
finally:
await browser.close()
def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
"""
Synchronous wrapper around the async Pyppeteer call.
"""
try:
loop = asyncio.get_event_loop()
result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
return result
except Exception as e:
logging.error(f"Error generating handwriting image: {e}")
return None
# ----------------------------
# Detect paper angle within bounding box
# ----------------------------
def detect_paper_angle(image, bounding_box):
x1, y1, x2, y2 = bounding_box
roi = np.array(image)[y1:y2, x1:x2]
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
if lines is not None:
longest_line = max(
lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
)
x1_line, y1_line, x2_line, y2_line = longest_line[0]
dx = x2_line - x1_line
dy = y2_line - y1_line
angle = degrees(atan2(dy, dx))
return angle
else:
return 0
# ----------------------------
# Main processing function
# ----------------------------
def process_image(image, text):
try:
# Initialize Roboflow
rf = Roboflow(api_key=ROBOFLOW_API_KEY)
logging.debug("Initialized Roboflow API.")
project = rf.workspace().project(PROJECT_NAME)
logging.debug("Accessed project in Roboflow.")
model = project.version(VERSION_NUMBER).model
logging.debug("Loaded model from Roboflow.")
# Save input image temporarily
input_image_path = "/tmp/input_image.jpg"
image.save(input_image_path)
logging.debug(f"Input image saved to {input_image_path}.")
# Perform inference
logging.debug("Performing inference on the image...")
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
logging.debug(f"Inference result: {prediction}")
pil_image = image.convert("RGBA")
logging.debug("Converted image to RGBA mode.")
# Iterate over detected objects (assumed white paper)
for obj in prediction['predictions']:
# Paper dimensions
white_paper_width = obj['width']
white_paper_height = obj['height']
# Padding
padding_x = int(white_paper_width * 0.1)
padding_y = int(white_paper_height * 0.1)
box_width = white_paper_width - 2 * padding_x
box_height = white_paper_height - 2 * padding_y
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
# Calculate padded coordinates
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
# Detect paper angle
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
logging.debug(f"Detected paper angle: {angle} degrees.")
# (Optional) debug bounding box
debug_layer = pil_image.copy()
debug_draw = ImageDraw.Draw(debug_layer)
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
debug_layer.save("/tmp/debug_bounding_box.png")
logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
# Generate handwriting image
handwriting_path = generate_handwriting_image(text, "/tmp/handwriting.png")
if not handwriting_path:
logging.error("Handwriting image generation failed.")
continue
handwriting_img = Image.open(handwriting_path).convert("RGBA")
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
# Composite the handwriting
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
pil_image = Image.alpha_composite(pil_image, text_layer)
logging.debug("Handwriting layer composited onto the original image.")
# Save output
output_image_path = "/tmp/output_image.png"
pil_image.convert("RGB").save(output_image_path)
logging.debug(f"Output image saved to {output_image_path}.")
return output_image_path
except Exception as e:
logging.error(f"Error during image processing: {e}")
return None
# ----------------------------
# Gradio inference function
# ----------------------------
def gradio_inference(image, text):
logging.debug("Starting Gradio inference.")
result_path = process_image(image, text)
if result_path:
logging.debug("Gradio inference successful.")
return result_path, result_path, "Processing complete! Download the image below."
logging.error("Gradio inference failed.")
return None, None, "An error occurred while processing the image. Please check the logs."
# ----------------------------
# Gradio interface
# ----------------------------
interface = gr.Interface(
fn=gradio_inference,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.Textbox(label="Enter Text to Overlay")
],
outputs=[
gr.Image(label="Processed Image Preview"),
gr.File(label="Download Processed Image"),
gr.Textbox(label="Status")
],
title="Roboflow Detection with Handwriting Overlay",
description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
allow_flagging="never",
# Limit concurrency to 1 to reduce potential conflicts with the single event loop
concurrency_count=1
)
if __name__ == "__main__":
logging.debug("Launching Gradio interface.")
interface.launch(share=True)
|