File size: 8,724 Bytes
dc428aa
 
 
 
ed5c13a
 
 
 
 
 
 
 
dc428aa
ed5c13a
 
 
 
1ef76af
ed5c13a
 
 
 
 
 
 
1ef76af
ed5c13a
 
 
 
dc428aa
ed5c13a
dc428aa
a77b32c
dc428aa
 
a77b32c
dc428aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77b32c
 
 
 
 
dc428aa
 
 
 
a77b32c
 
 
 
 
 
1ef76af
dc428aa
a77b32c
dc428aa
1ef76af
dc428aa
1ef76af
dc428aa
 
 
 
 
 
 
ed5c13a
 
dc428aa
ed5c13a
 
 
 
 
 
 
 
1ef76af
 
 
ed5c13a
 
 
 
a77b32c
ed5c13a
a77b32c
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc428aa
ed5c13a
dc428aa
ed5c13a
 
dc428aa
 
ed5c13a
 
 
 
 
 
dc428aa
ed5c13a
 
 
 
 
1ef76af
ed5c13a
 
 
dc428aa
ed5c13a
 
 
 
 
 
dc428aa
 
a77b32c
 
 
 
ed5c13a
 
 
 
dc428aa
ed5c13a
 
 
 
 
 
 
dc428aa
ed5c13a
 
 
 
 
 
 
 
 
 
dc428aa
ed5c13a
 
 
 
 
 
 
 
 
 
 
dc428aa
ed5c13a
 
 
 
 
 
 
 
a77b32c
 
 
ed5c13a
 
a77b32c
dc428aa
 
 
ed5c13a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import nest_asyncio
nest_asyncio.apply()

import os
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
from math import atan2, degrees
import asyncio
from pyppeteer import launch

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler("debug.log"),
        logging.StreamHandler()
    ]
)

# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"  # Replace with your API key if needed
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2

# ----------------------------
# Asynchronous function to generate handwriting image via Pyppeteer
# ----------------------------
async def _generate_handwriting_image(text_prompt, screenshot_path):
    """
    Launches a headless browser, goes to Calligraphr, types the text, 
    and takes a screenshot of the rendered handwriting.
    """
    # Launch Chromium with additional flags for containerized environments
    browser = await launch(
        headless=True,
        handleSIGINT=False,
        handleSIGTERM=False,
        handleSIGHUP=False,
        args=[
            '--no-sandbox',
            '--disable-setuid-sandbox',
            '--disable-dev-shm-usage',
            '--disable-gpu',
            '--single-process',
            '--no-zygote',
            '--window-size=1920,1080'
        ]
    )
    try:
        page = await browser.newPage()
        await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
        await page.waitForSelector('#text-input')
        await page.type('#text-input', text_prompt)

        # Give the page time to render the handwriting
        await asyncio.sleep(3)

        # Screenshot a portion of the page that should contain the handwriting
        await page.screenshot({
            'path': screenshot_path,
            'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
        })
        return screenshot_path

    finally:
        await browser.close()

def generate_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
    """
    Synchronous wrapper around the async Pyppeteer call.
    """
    try:
        loop = asyncio.get_event_loop()
        result = loop.run_until_complete(_generate_handwriting_image(text_prompt, screenshot_path))
        return result
    except Exception as e:
        logging.error(f"Error generating handwriting image: {e}")
        return None

# ----------------------------
# Detect paper angle within bounding box
# ----------------------------
def detect_paper_angle(image, bounding_box):
    x1, y1, x2, y2 = bounding_box
    roi = np.array(image)[y1:y2, x1:x2]
    gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
    edges = cv2.Canny(gray, 50, 150)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
    if lines is not None:
        longest_line = max(
            lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
        )
        x1_line, y1_line, x2_line, y2_line = longest_line[0]
        dx = x2_line - x1_line
        dy = y2_line - y1_line
        angle = degrees(atan2(dy, dx))
        return angle
    else:
        return 0

# ----------------------------
# Main processing function
# ----------------------------
def process_image(image, text):
    try:
        # Initialize Roboflow
        rf = Roboflow(api_key=ROBOFLOW_API_KEY)
        logging.debug("Initialized Roboflow API.")
        project = rf.workspace().project(PROJECT_NAME)
        logging.debug("Accessed project in Roboflow.")
        model = project.version(VERSION_NUMBER).model
        logging.debug("Loaded model from Roboflow.")

        # Save input image temporarily
        input_image_path = "/tmp/input_image.jpg"
        image.save(input_image_path)
        logging.debug(f"Input image saved to {input_image_path}.")

        # Perform inference
        logging.debug("Performing inference on the image...")
        prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
        logging.debug(f"Inference result: {prediction}")

        pil_image = image.convert("RGBA")
        logging.debug("Converted image to RGBA mode.")

        # Iterate over detected objects (assumed white paper)
        for obj in prediction['predictions']:
            # Paper dimensions
            white_paper_width = obj['width']
            white_paper_height = obj['height']

            # Padding
            padding_x = int(white_paper_width * 0.1)
            padding_y = int(white_paper_height * 0.1)
            box_width = white_paper_width - 2 * padding_x
            box_height = white_paper_height - 2 * padding_y
            logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")

            # Calculate padded coordinates
            x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
            y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
            x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
            y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)

            # Detect paper angle
            angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
            logging.debug(f"Detected paper angle: {angle} degrees.")

            # (Optional) debug bounding box
            debug_layer = pil_image.copy()
            debug_draw = ImageDraw.Draw(debug_layer)
            debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
            debug_layer.save("/tmp/debug_bounding_box.png")
            logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")

            # Generate handwriting image
            handwriting_path = generate_handwriting_image(text, "/tmp/handwriting.png")
            if not handwriting_path:
                logging.error("Handwriting image generation failed.")
                continue

            handwriting_img = Image.open(handwriting_path).convert("RGBA")
            handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
            rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)

            # Composite the handwriting
            text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
            paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
            paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
            text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
            pil_image = Image.alpha_composite(pil_image, text_layer)
            logging.debug("Handwriting layer composited onto the original image.")

        # Save output
        output_image_path = "/tmp/output_image.png"
        pil_image.convert("RGB").save(output_image_path)
        logging.debug(f"Output image saved to {output_image_path}.")
        return output_image_path

    except Exception as e:
        logging.error(f"Error during image processing: {e}")
        return None

# ----------------------------
# Gradio inference function
# ----------------------------
def gradio_inference(image, text):
    logging.debug("Starting Gradio inference.")
    result_path = process_image(image, text)
    if result_path:
        logging.debug("Gradio inference successful.")
        return result_path, result_path, "Processing complete! Download the image below."
    logging.error("Gradio inference failed.")
    return None, None, "An error occurred while processing the image. Please check the logs."

# ----------------------------
# Gradio interface
# ----------------------------
interface = gr.Interface(
    fn=gradio_inference,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Enter Text to Overlay")
    ],
    outputs=[
        gr.Image(label="Processed Image Preview"),
        gr.File(label="Download Processed Image"),
        gr.Textbox(label="Status")
    ],
    title="Roboflow Detection with Handwriting Overlay",
    description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
    allow_flagging="never",
    # Limit concurrency to 1 to reduce potential conflicts with the single event loop
    concurrency_count=1
)

if __name__ == "__main__":
    logging.debug("Launching Gradio interface.")
    interface.launch(share=True)