File size: 5,697 Bytes
4f7c2c3
 
9487094
4f7c2c3
 
 
 
 
 
 
44a9333
ed3f92b
694c989
4f7c2c3
 
 
 
5aef664
e4b1309
 
ed3f92b
 
05f28db
4f7c2c3
 
39dba98
 
4f7c2c3
5aef664
 
811ddcb
 
 
 
694c989
811ddcb
39dba98
811ddcb
 
 
 
 
 
 
 
 
 
 
5a8efa9
811ddcb
 
 
aff9d06
e97dbab
4f7c2c3
5aef664
4f7c2c3
 
 
 
 
 
 
 
 
ed3f92b
 
 
 
 
 
 
 
 
05f28db
4f7c2c3
 
 
 
 
 
aef42cb
4f7c2c3
 
aef42cb
4f7c2c3
ed3f92b
4f7c2c3
ed3f92b
 
 
 
 
 
 
 
 
05f28db
9487094
 
ed3f92b
 
4f7c2c3
694c989
 
e4b1309
 
 
694c989
 
 
 
 
d2df5a9
e4b1309
 
 
 
d2df5a9
694c989
 
 
 
 
5aef664
e4b1309
694c989
 
 
 
 
 
d2df5a9
e4b1309
694c989
 
e4b1309
d2df5a9
694c989
 
 
e4b1309
694c989
 
e4b1309
694c989
4f7c2c3
 
694c989
e4b1309
 
 
 
 
 
4f7c2c3
aef42cb
4f7c2c3
 
 
 
200f853
4f7c2c3
 
 
 
44a9333
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import torch
import torch.nn as nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import logging
import requests
from io import BytesIO

# Setup logging
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)

# Define the number of classes
num_classes = 3

# Confidence threshold for main model predictions
CONFIDENCE_THRESHOLD = 0.8  # 80%

# Energy threshold for OOD detection (to be calibrated)
ENERGY_THRESHOLD = -5.0  # Placeholder, will calibrate

# Download model from Hugging Face
def download_model():
    model_path = hf_hub_download(repo_id="jays009/Resnet3", filename="model.pth")
    return model_path

# Load the main model from Hugging Face
def load_main_model(model_path):
    model = models.resnet50(pretrained=False)
    num_features = model.fc.in_features
    model.fc = nn.Sequential(
        nn.Dropout(0.5),
        nn.Linear(num_features, num_classes)  # 3 classes
    )

    # Load the checkpoint
    checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
    
    # Adjust for state dict mismatch by renaming keys
    state_dict = checkpoint['model_state_dict']
    new_state_dict = {}
    for k, v in state_dict.items():
        if k == "fc.weight" or k == "fc.bias":
            new_state_dict[f"fc.1.{k.split('.')[-1]}"] = v
        else:
            new_state_dict[k] = v

    model.load_state_dict(new_state_dict, strict=False)
    model.eval()
    return model

# Path to your model
model_path = download_model()
main_model = load_main_model(model_path)

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# Compute energy score for OOD detection
def compute_energy_score(logits, temperature=1.0):
    return -temperature * torch.logsumexp(logits / temperature, dim=1).item()

# OOD detection using energy score
def is_in_distribution(logits):
    energy = compute_energy_score(logits)
    logger.info(f"Energy score: {energy:.4f}")  # Log for calibration
    return energy < ENERGY_THRESHOLD  # Lower (more negative) energy means ID

# Prediction function for an uploaded image
def predict_from_image_url(image_url):
    try:
        # Download the image from the provided URL
        response = requests.get(image_url)
        response.raise_for_status()
        image = Image.open(BytesIO(response.content)).convert("RGB")  # Convert to RGB (3 channels)

        # Apply transformations
        image_tensor = transform(image).unsqueeze(0)  # Shape: [1, 3, 224, 224]

        # Stage 1: OOD Detection using energy score
        with torch.no_grad():
            logits = main_model(image_tensor)  # Shape: [1, 3]
            if not is_in_distribution(logits):
                logger.warning(f"Image URL {image_url} detected as out-of-distribution.")
                return {
                    "status": "invalid",
                    "predicted_class": None,
                    "problem_id": None,
                    "confidence": None
                }

        # Stage 2: Main Model Prediction
        with torch.no_grad():
            probabilities = torch.softmax(logits, dim=1)[0]  # Convert to probabilities
            predicted_class = torch.argmax(logits, dim=1).item()

        # Define class information
        class_info = {
            0: {"name": "Fall Army Worm", "problem_id": "126", "crop": "maize"},
            1: {"name": "Phosphorus Deficiency", "problem_id": "142", "crop": "maize"},
            2: {"name": "Bacterial Leaf Blight", "problem_id": "203", "crop": "rice"}
        }

        # Validate predicted class index
        if predicted_class not in class_info:
            logger.warning(f"Unexpected class prediction: {predicted_class} for image URL: {image_url}")
            return {
                "status": "invalid",
                "predicted_class": None,
                "problem_id": None,
                "confidence": None
            }

        # Get predicted class info
        predicted_info = class_info[predicted_class]
        predicted_name = predicted_info["name"]
        problem_id = predicted_info["problem_id"]
        confidence = probabilities[predicted_class].item()

        # Check confidence threshold
        if confidence < CONFIDENCE_THRESHOLD:
            logger.warning(
                f"Low confidence prediction: {predicted_name} with confidence {confidence*100:.2f}% "
                f"for image URL: {image_url}"
            )
            return {
                "status": "invalid",
                "predicted_class": predicted_name,
                "problem_id": problem_id,
                "confidence": f"{confidence*100:.2f}%"
            }

        # Return successful prediction
        return {
            "status": "valid",
            "predicted_class": predicted_name,
            "problem_id": problem_id,
            "confidence": f"{confidence*100:.2f}%"
        }

    except Exception as e:
        logger.error(f"Error processing image URL {image_url}: {str(e)}")
        return {
            "status": "invalid",
            "predicted_class": None,
            "problem_id": None,
            "confidence": None
        }

# Gradio interface
demo = gr.Interface(
    fn=predict_from_image_url,
    inputs="text",
    outputs="json",
    title="Crop Anomaly Classification",
    description="Enter a URL to an image for classification (Fall Army Worm, Phosphorus Deficiency, or Bacterial Leaf Blight).",
)

if __name__ == "__main__":
    demo.launch()