Spaces:
Sleeping
Sleeping
File size: 5,697 Bytes
4f7c2c3 9487094 4f7c2c3 44a9333 ed3f92b 694c989 4f7c2c3 5aef664 e4b1309 ed3f92b 05f28db 4f7c2c3 39dba98 4f7c2c3 5aef664 811ddcb 694c989 811ddcb 39dba98 811ddcb 5a8efa9 811ddcb aff9d06 e97dbab 4f7c2c3 5aef664 4f7c2c3 ed3f92b 05f28db 4f7c2c3 aef42cb 4f7c2c3 aef42cb 4f7c2c3 ed3f92b 4f7c2c3 ed3f92b 05f28db 9487094 ed3f92b 4f7c2c3 694c989 e4b1309 694c989 d2df5a9 e4b1309 d2df5a9 694c989 5aef664 e4b1309 694c989 d2df5a9 e4b1309 694c989 e4b1309 d2df5a9 694c989 e4b1309 694c989 e4b1309 694c989 4f7c2c3 694c989 e4b1309 4f7c2c3 aef42cb 4f7c2c3 200f853 4f7c2c3 44a9333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import torch
import torch.nn as nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import logging
import requests
from io import BytesIO
# Setup logging
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)
# Define the number of classes
num_classes = 3
# Confidence threshold for main model predictions
CONFIDENCE_THRESHOLD = 0.8 # 80%
# Energy threshold for OOD detection (to be calibrated)
ENERGY_THRESHOLD = -5.0 # Placeholder, will calibrate
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Resnet3", filename="model.pth")
return model_path
# Load the main model from Hugging Face
def load_main_model(model_path):
model = models.resnet50(pretrained=False)
num_features = model.fc.in_features
model.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(num_features, num_classes) # 3 classes
)
# Load the checkpoint
checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
# Adjust for state dict mismatch by renaming keys
state_dict = checkpoint['model_state_dict']
new_state_dict = {}
for k, v in state_dict.items():
if k == "fc.weight" or k == "fc.bias":
new_state_dict[f"fc.1.{k.split('.')[-1]}"] = v
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict, strict=False)
model.eval()
return model
# Path to your model
model_path = download_model()
main_model = load_main_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Compute energy score for OOD detection
def compute_energy_score(logits, temperature=1.0):
return -temperature * torch.logsumexp(logits / temperature, dim=1).item()
# OOD detection using energy score
def is_in_distribution(logits):
energy = compute_energy_score(logits)
logger.info(f"Energy score: {energy:.4f}") # Log for calibration
return energy < ENERGY_THRESHOLD # Lower (more negative) energy means ID
# Prediction function for an uploaded image
def predict_from_image_url(image_url):
try:
# Download the image from the provided URL
response = requests.get(image_url)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB") # Convert to RGB (3 channels)
# Apply transformations
image_tensor = transform(image).unsqueeze(0) # Shape: [1, 3, 224, 224]
# Stage 1: OOD Detection using energy score
with torch.no_grad():
logits = main_model(image_tensor) # Shape: [1, 3]
if not is_in_distribution(logits):
logger.warning(f"Image URL {image_url} detected as out-of-distribution.")
return {
"status": "invalid",
"predicted_class": None,
"problem_id": None,
"confidence": None
}
# Stage 2: Main Model Prediction
with torch.no_grad():
probabilities = torch.softmax(logits, dim=1)[0] # Convert to probabilities
predicted_class = torch.argmax(logits, dim=1).item()
# Define class information
class_info = {
0: {"name": "Fall Army Worm", "problem_id": "126", "crop": "maize"},
1: {"name": "Phosphorus Deficiency", "problem_id": "142", "crop": "maize"},
2: {"name": "Bacterial Leaf Blight", "problem_id": "203", "crop": "rice"}
}
# Validate predicted class index
if predicted_class not in class_info:
logger.warning(f"Unexpected class prediction: {predicted_class} for image URL: {image_url}")
return {
"status": "invalid",
"predicted_class": None,
"problem_id": None,
"confidence": None
}
# Get predicted class info
predicted_info = class_info[predicted_class]
predicted_name = predicted_info["name"]
problem_id = predicted_info["problem_id"]
confidence = probabilities[predicted_class].item()
# Check confidence threshold
if confidence < CONFIDENCE_THRESHOLD:
logger.warning(
f"Low confidence prediction: {predicted_name} with confidence {confidence*100:.2f}% "
f"for image URL: {image_url}"
)
return {
"status": "invalid",
"predicted_class": predicted_name,
"problem_id": problem_id,
"confidence": f"{confidence*100:.2f}%"
}
# Return successful prediction
return {
"status": "valid",
"predicted_class": predicted_name,
"problem_id": problem_id,
"confidence": f"{confidence*100:.2f}%"
}
except Exception as e:
logger.error(f"Error processing image URL {image_url}: {str(e)}")
return {
"status": "invalid",
"predicted_class": None,
"problem_id": None,
"confidence": None
}
# Gradio interface
demo = gr.Interface(
fn=predict_from_image_url,
inputs="text",
outputs="json",
title="Crop Anomaly Classification",
description="Enter a URL to an image for classification (Fall Army Worm, Phosphorus Deficiency, or Bacterial Leaf Blight).",
)
if __name__ == "__main__":
demo.launch() |