Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,12 @@ import torch.nn as nn
|
|
4 |
from torchvision import models, transforms
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
7 |
-
import os
|
8 |
import logging
|
9 |
import requests
|
10 |
from io import BytesIO
|
11 |
-
import numpy as np
|
12 |
-
from scipy.spatial.distance import mahalanobis
|
13 |
|
14 |
# Setup logging
|
15 |
-
logging.basicConfig(level=logging.
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
# Define the number of classes
|
@@ -21,8 +18,8 @@ num_classes = 3
|
|
21 |
# Confidence threshold for main model predictions
|
22 |
CONFIDENCE_THRESHOLD = 0.8 # 80%
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
|
27 |
# Download model from Hugging Face
|
28 |
def download_model():
|
@@ -54,13 +51,6 @@ def load_main_model(model_path):
|
|
54 |
model.eval()
|
55 |
return model
|
56 |
|
57 |
-
# Load class statistics for Mahalanobis distance
|
58 |
-
try:
|
59 |
-
class_statistics = torch.load("class_statistics.pth", map_location=torch.device("cpu"))
|
60 |
-
except FileNotFoundError:
|
61 |
-
logger.error("class_statistics.pth not found. Please ensure the file is in the same directory as app.py.")
|
62 |
-
raise
|
63 |
-
|
64 |
# Path to your model
|
65 |
model_path = download_model()
|
66 |
main_model = load_main_model(model_path)
|
@@ -73,27 +63,15 @@ transform = transforms.Compose([
|
|
73 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
74 |
])
|
75 |
|
76 |
-
# Compute
|
77 |
-
def
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
return
|
85 |
-
|
86 |
-
# OOD detection using Mahalanobis distance
|
87 |
-
def is_in_distribution(features):
|
88 |
-
distances = []
|
89 |
-
for label in class_statistics:
|
90 |
-
mean = class_statistics[label]["mean"]
|
91 |
-
cov = class_statistics[label]["cov"]
|
92 |
-
distance = compute_mahalanobis_distance(features, mean, cov)
|
93 |
-
distances.append(distance)
|
94 |
-
min_distance = min(distances)
|
95 |
-
logger.info(f"Minimum Mahalanobis distance: {min_distance:.4f}")
|
96 |
-
return min_distance < MAHALANOBIS_THRESHOLD
|
97 |
|
98 |
# Prediction function for an uploaded image
|
99 |
def predict_from_image_url(image_url):
|
@@ -105,35 +83,23 @@ def predict_from_image_url(image_url):
|
|
105 |
|
106 |
# Apply transformations
|
107 |
image_tensor = transform(image).unsqueeze(0) # Shape: [1, 3, 224, 224]
|
108 |
-
logger.info(f"Input image tensor shape: {image_tensor.shape}")
|
109 |
|
110 |
-
#
|
111 |
with torch.no_grad():
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
logger.warning(f"Image URL {image_url} detected as out-of-distribution.")
|
122 |
-
return {
|
123 |
-
"status": "invalid",
|
124 |
-
"predicted_class": None,
|
125 |
-
"problem_id": None,
|
126 |
-
"confidence": None
|
127 |
-
}
|
128 |
|
129 |
# Stage 2: Main Model Prediction
|
130 |
with torch.no_grad():
|
131 |
-
|
132 |
-
|
133 |
-
logger.info(f"Raw logits: {outputs[0].numpy()}")
|
134 |
-
probabilities = torch.softmax(outputs, dim=1)[0] # Convert to probabilities
|
135 |
-
logger.info(f"Softmax probabilities: {probabilities.numpy()}")
|
136 |
-
predicted_class = torch.argmax(outputs, dim=1).item()
|
137 |
|
138 |
# Define class information
|
139 |
class_info = {
|
|
|
4 |
from torchvision import models, transforms
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
|
|
7 |
import logging
|
8 |
import requests
|
9 |
from io import BytesIO
|
|
|
|
|
10 |
|
11 |
# Setup logging
|
12 |
+
logging.basicConfig(level=logging.WARNING)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# Define the number of classes
|
|
|
18 |
# Confidence threshold for main model predictions
|
19 |
CONFIDENCE_THRESHOLD = 0.8 # 80%
|
20 |
|
21 |
+
# Energy threshold for OOD detection (to be calibrated)
|
22 |
+
ENERGY_THRESHOLD = -5.0 # Placeholder, will calibrate
|
23 |
|
24 |
# Download model from Hugging Face
|
25 |
def download_model():
|
|
|
51 |
model.eval()
|
52 |
return model
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Path to your model
|
55 |
model_path = download_model()
|
56 |
main_model = load_main_model(model_path)
|
|
|
63 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
64 |
])
|
65 |
|
66 |
+
# Compute energy score for OOD detection
|
67 |
+
def compute_energy_score(logits, temperature=1.0):
|
68 |
+
return -temperature * torch.logsumexp(logits / temperature, dim=1).item()
|
69 |
+
|
70 |
+
# OOD detection using energy score
|
71 |
+
def is_in_distribution(logits):
|
72 |
+
energy = compute_energy_score(logits)
|
73 |
+
logger.info(f"Energy score: {energy:.4f}") # Log for calibration
|
74 |
+
return energy < ENERGY_THRESHOLD # Lower (more negative) energy means ID
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Prediction function for an uploaded image
|
77 |
def predict_from_image_url(image_url):
|
|
|
83 |
|
84 |
# Apply transformations
|
85 |
image_tensor = transform(image).unsqueeze(0) # Shape: [1, 3, 224, 224]
|
|
|
86 |
|
87 |
+
# Stage 1: OOD Detection using energy score
|
88 |
with torch.no_grad():
|
89 |
+
logits = main_model(image_tensor) # Shape: [1, 3]
|
90 |
+
if not is_in_distribution(logits):
|
91 |
+
logger.warning(f"Image URL {image_url} detected as out-of-distribution.")
|
92 |
+
return {
|
93 |
+
"status": "invalid",
|
94 |
+
"predicted_class": None,
|
95 |
+
"problem_id": None,
|
96 |
+
"confidence": None
|
97 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Stage 2: Main Model Prediction
|
100 |
with torch.no_grad():
|
101 |
+
probabilities = torch.softmax(logits, dim=1)[0] # Convert to probabilities
|
102 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
|
|
|
|
|
|
|
|
103 |
|
104 |
# Define class information
|
105 |
class_info = {
|