jays009 commited on
Commit
aef42cb
·
verified ·
1 Parent(s): 39dba98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -8
app.py CHANGED
@@ -58,36 +58,59 @@ transform = transforms.Compose([
58
  ])
59
 
60
  # Prediction function for an uploaded image
61
-
62
  def predict_from_image_url(image_url):
63
  try:
64
  # Download the image from the provided URL
65
  response = requests.get(image_url)
66
  response.raise_for_status()
67
- image = Image.open(BytesIO(response.content))
68
 
69
  # Apply transformations
70
- image_tensor = transform(image).unsqueeze(0)
 
71
 
72
  # Perform prediction
73
  with torch.no_grad():
74
- outputs = model(image_tensor)
 
 
75
  predicted_class = torch.argmax(outputs, dim=1).item()
76
 
77
  # Interpret the result
78
  if predicted_class == 0:
79
- return {"result": "The photo is of Fall Army Worm with problem ID 126."}
 
 
 
 
 
 
 
80
  elif predicted_class == 1:
81
- return {"result": "The photo shows symptoms of Phosphorus Deficiency with Problem ID 142."}
 
 
 
 
 
 
 
82
  elif predicted_class == 2:
83
- return {"result": "The photo shows symptoms of Bacterial Leaf Blight with Problem ID 203."}
 
 
 
 
 
 
 
84
  else:
85
  return {"error": "Unexpected class prediction."}
86
 
87
  except Exception as e:
88
  return {"error": str(e)}
89
 
90
-
91
  demo = gr.Interface(
92
  fn=predict_from_image_url,
93
  inputs="text",
 
58
  ])
59
 
60
  # Prediction function for an uploaded image
 
61
  def predict_from_image_url(image_url):
62
  try:
63
  # Download the image from the provided URL
64
  response = requests.get(image_url)
65
  response.raise_for_status()
66
+ image = Image.open(BytesIO(response.content)).convert("RGB") # Convert to RGB (3 channels)
67
 
68
  # Apply transformations
69
+ image_tensor = transform(image).unsqueeze(0) # Shape: [1, 3, 224, 224]
70
+ print(f"Input image tensor shape: {image_tensor.shape}") # Debug: Should be [1, 3, 224, 224]
71
 
72
  # Perform prediction
73
  with torch.no_grad():
74
+ outputs = model(image_tensor) # Shape: [1, 3]
75
+ print(f"Model output shape: {outputs.shape}") # Debug: Should be [1, 3]
76
+ probabilities = torch.softmax(outputs, dim=1)[0] # Convert to probabilities
77
  predicted_class = torch.argmax(outputs, dim=1).item()
78
 
79
  # Interpret the result
80
  if predicted_class == 0:
81
+ return {
82
+ "result": "The photo is of Fall Army Worm with problem ID 126.",
83
+ "probabilities": {
84
+ "Fall Army Worm": f"{probabilities[0]*100:.2f}%",
85
+ "Phosphorus Deficiency": f"{probabilities[1]*100:.2f}%",
86
+ "Bacterial Leaf Blight": f"{probabilities[2]*100:.2f}%"
87
+ }
88
+ }
89
  elif predicted_class == 1:
90
+ return {
91
+ "result": "The photo shows symptoms of Phosphorus Deficiency with Problem ID 142.",
92
+ "probabilities": {
93
+ "Fall Army Worm": f"{probabilities[0]*100:.2f}%",
94
+ "Phosphorus Deficiency": f"{probabilities[1]*100:.2f}%",
95
+ "Bacterial Leaf Blight": f"{probabilities[2]*100:.2f}%"
96
+ }
97
+ }
98
  elif predicted_class == 2:
99
+ return {
100
+ "result": "The photo shows symptoms of Bacterial Leaf Blight with Problem ID 203.",
101
+ "probabilities": {
102
+ "Fall Army Worm": f"{probabilities[0]*100:.2f}%",
103
+ "Phosphorus Deficiency": f"{probabilities[1]*100:.2f}%",
104
+ "Bacterial Leaf Blight": f"{probabilities[2]*100:.2f}%"
105
+ }
106
+ }
107
  else:
108
  return {"error": "Unexpected class prediction."}
109
 
110
  except Exception as e:
111
  return {"error": str(e)}
112
 
113
+ # Gradio interface
114
  demo = gr.Interface(
115
  fn=predict_from_image_url,
116
  inputs="text",