Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torchvision import models, transforms
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import os
|
| 8 |
+
import logging
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
|
| 12 |
+
# Setup logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
|
| 15 |
+
# Define the number of classes
|
| 16 |
+
num_classes = 3
|
| 17 |
+
|
| 18 |
+
# Download model from Hugging Face
|
| 19 |
+
def download_model():
|
| 20 |
+
model_path = hf_hub_download(repo_id="jays009/Resnet3", filename="model.pth")
|
| 21 |
+
return model_path
|
| 22 |
+
|
| 23 |
+
# Load the model from Hugging Face
|
| 24 |
+
def load_model(model_path):
|
| 25 |
+
model = models.resnet50(pretrained=False)
|
| 26 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
| 27 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
| 28 |
+
model.eval()
|
| 29 |
+
logging.info("Model loaded successfully. Ready for inference.")
|
| 30 |
+
return model
|
| 31 |
+
|
| 32 |
+
# Download the model and load it
|
| 33 |
+
model_path = download_model()
|
| 34 |
+
model = load_model(model_path)
|
| 35 |
+
|
| 36 |
+
# Define the transformation for the input image
|
| 37 |
+
transform = transforms.Compose([
|
| 38 |
+
transforms.Resize(256),
|
| 39 |
+
transforms.CenterCrop(224),
|
| 40 |
+
transforms.ToTensor(),
|
| 41 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 42 |
+
])
|
| 43 |
+
|
| 44 |
+
# Prediction function for an uploaded image
|
| 45 |
+
|
| 46 |
+
def predict_from_image_url(image_url):
|
| 47 |
+
try:
|
| 48 |
+
# Download the image from the provided URL
|
| 49 |
+
response = requests.get(image_url)
|
| 50 |
+
response.raise_for_status()
|
| 51 |
+
image = Image.open(BytesIO(response.content))
|
| 52 |
+
|
| 53 |
+
# Apply transformations
|
| 54 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 55 |
+
|
| 56 |
+
# Perform prediction
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
outputs = model(image_tensor)
|
| 59 |
+
predicted_class = torch.argmax(outputs, dim=1).item()
|
| 60 |
+
|
| 61 |
+
# Interpret the result
|
| 62 |
+
if predicted_class == 0:
|
| 63 |
+
return {"result": "The photo is of Fall Army Worm with problem ID 126."}
|
| 64 |
+
elif predicted_class == 1:
|
| 65 |
+
return {"result": "The photo shows symptoms of Phosphorus Deficiency with Problem ID 142."}
|
| 66 |
+
elif predicted_class == 2:
|
| 67 |
+
return {"result": "The photo shows symptoms of Bacterial Leaf Blight with Problem ID 203."}
|
| 68 |
+
else:
|
| 69 |
+
return {"error": "Unexpected class prediction."}
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
return {"error": str(e)}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
demo = gr.Interface(
|
| 76 |
+
fn=predict_from_image_url,
|
| 77 |
+
inputs="text",
|
| 78 |
+
outputs="json",
|
| 79 |
+
title="Maize Disease Classification",
|
| 80 |
+
description="Enter a URL to an image for classification (Fall Army Worm, Phosphorus Deficiency, or Bacterial Leaf Blight).",
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
demo.launch()
|