Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,573 Bytes
6e24cbe f469d2f 082faa8 c3d416d 082faa8 c3d416d 082faa8 f469d2f 77ed278 082faa8 f469d2f 082faa8 f469d2f 082faa8 e093f64 f469d2f 082faa8 c3d416d 082faa8 c3d416d 082faa8 f469d2f 082faa8 f469d2f c3d416d f469d2f 082faa8 f469d2f 6de338c f469d2f 082faa8 c3d416d 082faa8 f469d2f 082faa8 f469d2f c3d416d 082faa8 f469d2f 6de338c 082faa8 c3d416d 082faa8 c0a15e9 f469d2f 300ef20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import spaces
import os
import time
from os import path
from huggingface_hub import hf_hub_download
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from einops import rearrange
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import shutil
import tempfile
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
import random
import requests
import io
# Set up cache path
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def find_cuda():
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
nvcc_path = shutil.which('nvcc')
if nvcc_path:
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
cuda_path = find_cuda()
if cuda_path:
print(f"CUDA installation found at: {cuda_path}")
else:
print("CUDA installation not found")
API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
device = 'cuda'
# Load 3D generation models
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
# Load diffusion model for 3D generation
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# Load custom white-background UNet
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# Load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
print('Loading Finished!')
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
@spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):
seed_everything(sample_seed)
z123_image = pipeline(
input_image,
num_inference_steps=sample_steps
).images[0]
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image)
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
@spaces.GPU
def make3d(images):
global model
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, use_renderer=False)
model = model.eval()
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
planes = model.forward_planes(images, input_cameras)
mesh_out = model.extract_mesh(
planes,
use_texture_map=False,
**infer_config,
)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, mesh_fpath)
return mesh_fpath, mesh_glb_fpath
# Remove the FluxPipeline setup and replace with the query function
def query(prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024):
if not prompt:
return None
lora_id = "gokaygokay/Flux-Game-Assets-LoRA-v2"
API_URL = f"https://api-inference.huggingface.co/models/{lora_id}"
if randomize_seed:
seed = random.randint(1, 4294967296)
payload = {
"inputs": prompt,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed,
"parameters": {
"width": width,
"height": height
}
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=100)
if response.status_code != 200:
if response.status_code == 503:
raise gr.Error("The model is being loaded")
raise gr.Error(f"Error {response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
# Update the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem;">Flux Image to 3D Model Generator</h1>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Your Image Description",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
seed = gr.Number(label="Seed", value=-1, precision=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
generate_btn = gr.Button("Generate 3D Model", variant="primary")
with gr.Column(scale=4):
flux_output = gr.Image(label="Generated Flux Image")
mv_show_images = gr.Image(label="Generated Multi-views")
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(label="Output Model (OBJ Format)")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(label="Output Model (GLB Format)")
mv_images = gr.State()
def process_pipeline(prompt, height, width, steps, scales, seed, randomize_seed):
# Generate Flux image using the API
prompt_real = f"wbgmsst, {prompt}, white background"
flux_image = query(prompt_real, steps, scales, randomize_seed, seed, width, height)
if flux_image is None:
raise gr.Error("Failed to generate image")
processed_image = preprocess(flux_image, do_remove_background=True)
mv_images, show_image = generate_mvs(processed_image, steps, seed)
obj_path, glb_path = make3d(mv_images)
return flux_image, show_image, obj_path, glb_path
generate_btn.click(
fn=process_pipeline,
inputs=[prompt, height, width, steps, scales, seed, randomize_seed],
outputs=[flux_output, mv_show_images, output_model_obj, output_model_glb]
)
if __name__ == "__main__":
demo.queue().launch()
|