Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,46 +5,20 @@ import time
|
|
5 |
from os import path
|
6 |
from safetensors.torch import load_file
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
import imageio
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
import rembg
|
12 |
-
from PIL import Image
|
13 |
-
from torchvision.transforms import v2
|
14 |
-
from pytorch_lightning import seed_everything
|
15 |
-
from omegaconf import OmegaConf
|
16 |
-
from einops import rearrange, repeat
|
17 |
-
from tqdm import tqdm
|
18 |
-
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
19 |
-
import gradio as gr
|
20 |
-
import shutil
|
21 |
-
import tempfile
|
22 |
-
from functools import partial
|
23 |
-
from optimum.quanto import quantize, qfloat8, freeze
|
24 |
-
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
25 |
-
|
26 |
-
from src.utils.train_util import instantiate_from_config
|
27 |
-
from src.utils.camera_util import (
|
28 |
-
FOV_to_intrinsics,
|
29 |
-
get_zero123plus_input_cameras,
|
30 |
-
get_circular_camera_poses,
|
31 |
-
)
|
32 |
-
from src.utils.mesh_util import save_obj, save_glb
|
33 |
-
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
34 |
|
35 |
-
# Set up cache path
|
36 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
37 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
38 |
os.environ["HF_HUB_CACHE"] = cache_path
|
39 |
os.environ["HF_HOME"] = cache_path
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
os.makedirs(cache_path, exist_ok=True)
|
45 |
|
46 |
torch.backends.cuda.matmul.allow_tf32 = True
|
47 |
|
|
|
|
|
48 |
class timer:
|
49 |
def __init__(self, method_name="timed process"):
|
50 |
self.method = method_name
|
@@ -55,216 +29,83 @@ class timer:
|
|
55 |
end = time.time()
|
56 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
if cuda_home and os.path.exists(cuda_home):
|
61 |
-
return cuda_home
|
62 |
-
nvcc_path = shutil.which('nvcc')
|
63 |
-
if nvcc_path:
|
64 |
-
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
65 |
-
return cuda_path
|
66 |
-
return None
|
67 |
-
|
68 |
-
cuda_path = find_cuda()
|
69 |
-
if cuda_path:
|
70 |
-
print(f"CUDA installation found at: {cuda_path}")
|
71 |
-
else:
|
72 |
-
print("CUDA installation not found")
|
73 |
-
|
74 |
-
|
75 |
-
dtype = torch.bfloat16
|
76 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
77 |
-
|
78 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
|
79 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1, token=huggingface_token).to("cuda")
|
80 |
-
torch.cuda.empty_cache()
|
81 |
-
|
82 |
-
# Load and fuse LoRA BEFORE quantizing
|
83 |
-
print('Loading and fusing lora, please wait...')
|
84 |
-
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
|
85 |
-
pipe.load_lora_weights(lora_path)
|
86 |
-
pipe.fuse_lora(lora_scale=1.0)
|
87 |
-
pipe.unload_lora_weights()
|
88 |
-
pipe.enable_model_cpu_offload()
|
89 |
-
|
90 |
-
|
91 |
-
# Load 3D generation models
|
92 |
-
config_path = 'configs/instant-mesh-large.yaml'
|
93 |
-
config = OmegaConf.load(config_path)
|
94 |
-
config_name = os.path.basename(config_path).replace('.yaml', '')
|
95 |
-
model_config = config.model_config
|
96 |
-
infer_config = config.infer_config
|
97 |
-
|
98 |
-
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
|
99 |
-
|
100 |
-
# Load diffusion model for 3D generation
|
101 |
-
print('Loading diffusion model ...')
|
102 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
103 |
-
"sudo-ai/zero123plus-v1.2",
|
104 |
-
custom_pipeline="zero123plus",
|
105 |
-
torch_dtype=torch.float16,
|
106 |
-
)
|
107 |
-
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
108 |
-
pipeline.scheduler.config, timestep_spacing='trailing'
|
109 |
-
)
|
110 |
-
|
111 |
-
# Load custom white-background UNet
|
112 |
-
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
113 |
-
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
114 |
-
pipeline.unet.load_state_dict(state_dict, strict=True)
|
115 |
-
|
116 |
-
pipeline = pipeline.to(device)
|
117 |
-
|
118 |
-
# Load reconstruction model
|
119 |
-
print('Loading reconstruction model ...')
|
120 |
-
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
121 |
-
model = instantiate_from_config(model_config)
|
122 |
-
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
123 |
-
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
124 |
-
model.load_state_dict(state_dict, strict=True)
|
125 |
-
|
126 |
-
model = model.to(device)
|
127 |
-
|
128 |
-
print('Loading Finished!')
|
129 |
-
|
130 |
-
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
131 |
-
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
132 |
-
if is_flexicubes:
|
133 |
-
cameras = torch.linalg.inv(c2ws)
|
134 |
-
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
135 |
-
else:
|
136 |
-
extrinsics = c2ws.flatten(-2)
|
137 |
-
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
138 |
-
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
139 |
-
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
140 |
-
return cameras
|
141 |
-
|
142 |
-
def preprocess(input_image, do_remove_background):
|
143 |
-
rembg_session = rembg.new_session() if do_remove_background else None
|
144 |
-
if do_remove_background:
|
145 |
-
input_image = remove_background(input_image, rembg_session)
|
146 |
-
input_image = resize_foreground(input_image, 0.85)
|
147 |
-
return input_image
|
148 |
-
|
149 |
-
ts_cutoff = 2
|
150 |
-
|
151 |
-
@spaces.GPU
|
152 |
-
def generate_flux_image(prompt, height, width, steps, scales, seed):
|
153 |
-
return pipe(
|
154 |
-
prompt=prompt,
|
155 |
-
width=int(height),
|
156 |
-
height=int(width),
|
157 |
-
num_inference_steps=int(steps),
|
158 |
-
generator=torch.Generator().manual_seed(int(seed)),
|
159 |
-
guidance_scale=float(scales),
|
160 |
-
timestep_to_start_cfg=ts_cutoff,
|
161 |
-
).images[0]
|
162 |
-
|
163 |
-
|
164 |
-
@spaces.GPU
|
165 |
-
def generate_mvs(input_image, sample_steps, sample_seed):
|
166 |
-
seed_everything(sample_seed)
|
167 |
-
z123_image = pipeline(
|
168 |
-
input_image,
|
169 |
-
num_inference_steps=sample_steps
|
170 |
-
).images[0]
|
171 |
-
show_image = np.asarray(z123_image, dtype=np.uint8)
|
172 |
-
show_image = torch.from_numpy(show_image)
|
173 |
-
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
174 |
-
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
175 |
-
show_image = Image.fromarray(show_image.numpy())
|
176 |
-
return z123_image, show_image
|
177 |
-
|
178 |
-
@spaces.GPU
|
179 |
-
def make3d(images):
|
180 |
-
global model
|
181 |
-
if IS_FLEXICUBES:
|
182 |
-
model.init_flexicubes_geometry(device, use_renderer=False)
|
183 |
-
model = model.eval()
|
184 |
-
|
185 |
-
images = np.asarray(images, dtype=np.float32) / 255.0
|
186 |
-
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
187 |
-
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
188 |
-
|
189 |
-
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
190 |
-
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
191 |
-
|
192 |
-
images = images.unsqueeze(0).to(device)
|
193 |
-
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
194 |
-
|
195 |
-
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
196 |
-
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
197 |
-
mesh_dirname = os.path.dirname(mesh_fpath)
|
198 |
-
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
use_texture_map=False,
|
205 |
-
**infer_config,
|
206 |
-
)
|
207 |
-
vertices, faces, vertex_colors = mesh_out
|
208 |
-
vertices = vertices[:, [1, 2, 0]]
|
209 |
-
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
210 |
-
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
211 |
-
|
212 |
-
return mesh_fpath, mesh_glb_fpath
|
213 |
|
214 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
215 |
gr.Markdown(
|
216 |
"""
|
217 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
218 |
-
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem;">
|
|
|
219 |
</div>
|
220 |
"""
|
221 |
)
|
222 |
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=3):
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
with gr.
|
233 |
-
with gr.
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
244 |
|
245 |
with gr.Column(scale=4):
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
generate_btn.click(
|
264 |
-
|
265 |
-
inputs=[
|
266 |
-
outputs=
|
267 |
)
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
-
demo.launch()
|
|
|
5 |
from os import path
|
6 |
from safetensors.torch import load_file
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
10 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
11 |
os.environ["HF_HUB_CACHE"] = cache_path
|
12 |
os.environ["HF_HOME"] = cache_path
|
13 |
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
from diffusers import FluxPipeline
|
|
|
17 |
|
18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
19 |
|
20 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
21 |
+
|
22 |
class timer:
|
23 |
def __init__(self, method_name="timed process"):
|
24 |
self.method = method_name
|
|
|
29 |
end = time.time()
|
30 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
31 |
|
32 |
+
if not path.exists(cache_path):
|
33 |
+
os.makedirs(cache_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=huggingface_token)
|
36 |
+
pipe.load_lora_weights(hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors"))
|
37 |
+
pipe.fuse_lora(lora_scale=1)
|
38 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
41 |
gr.Markdown(
|
42 |
"""
|
43 |
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
44 |
+
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
|
45 |
+
<p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
|
46 |
</div>
|
47 |
"""
|
48 |
)
|
49 |
|
50 |
with gr.Row():
|
51 |
with gr.Column(scale=3):
|
52 |
+
with gr.Group():
|
53 |
+
prompt = gr.Textbox(
|
54 |
+
label="Your Image Description",
|
55 |
+
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
|
56 |
+
lines=3
|
57 |
+
)
|
58 |
+
|
59 |
+
with gr.Accordion("Advanced Settings", open=False):
|
60 |
+
with gr.Group():
|
61 |
+
with gr.Row():
|
62 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
|
63 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
|
67 |
+
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
|
68 |
+
|
69 |
+
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
|
70 |
+
|
71 |
+
generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
|
72 |
|
73 |
with gr.Column(scale=4):
|
74 |
+
output = gr.Image(label="Your Generated Image")
|
75 |
+
|
76 |
+
gr.Markdown(
|
77 |
+
"""
|
78 |
+
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
|
79 |
+
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
|
80 |
+
<ol style="padding-left: 1.5rem;">
|
81 |
+
<li>Enter a detailed description of the image you want to create.</li>
|
82 |
+
<li>Adjust advanced settings if desired (tap to expand).</li>
|
83 |
+
<li>Tap "Generate Image" and wait for your creation!</li>
|
84 |
+
</ol>
|
85 |
+
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
|
86 |
+
</div>
|
87 |
+
"""
|
88 |
+
)
|
89 |
|
90 |
+
@spaces.GPU
|
91 |
+
def process_image(height, width, steps, scales, prompt, seed):
|
92 |
+
global pipe
|
93 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
94 |
+
return pipe(
|
95 |
+
prompt=[prompt],
|
96 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
97 |
+
num_inference_steps=int(steps),
|
98 |
+
guidance_scale=float(scales),
|
99 |
+
height=int(height),
|
100 |
+
width=int(width),
|
101 |
+
max_sequence_length=256
|
102 |
+
).images[0]
|
103 |
|
104 |
generate_btn.click(
|
105 |
+
process_image,
|
106 |
+
inputs=[height, width, steps, scales, prompt, seed],
|
107 |
+
outputs=output
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
+
demo.launch()
|