gokaygokay commited on
Commit
e093f64
·
verified ·
1 Parent(s): 98e4cdc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -224
app.py CHANGED
@@ -5,46 +5,20 @@ import time
5
  from os import path
6
  from safetensors.torch import load_file
7
  from huggingface_hub import hf_hub_download
8
- import imageio
9
- import numpy as np
10
- import torch
11
- import rembg
12
- from PIL import Image
13
- from torchvision.transforms import v2
14
- from pytorch_lightning import seed_everything
15
- from omegaconf import OmegaConf
16
- from einops import rearrange, repeat
17
- from tqdm import tqdm
18
- from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
19
- import gradio as gr
20
- import shutil
21
- import tempfile
22
- from functools import partial
23
- from optimum.quanto import quantize, qfloat8, freeze
24
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
25
-
26
- from src.utils.train_util import instantiate_from_config
27
- from src.utils.camera_util import (
28
- FOV_to_intrinsics,
29
- get_zero123plus_input_cameras,
30
- get_circular_camera_poses,
31
- )
32
- from src.utils.mesh_util import save_obj, save_glb
33
- from src.utils.infer_util import remove_background, resize_foreground, images_to_video
34
 
35
- # Set up cache path
36
  cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
37
  os.environ["TRANSFORMERS_CACHE"] = cache_path
38
  os.environ["HF_HUB_CACHE"] = cache_path
39
  os.environ["HF_HOME"] = cache_path
40
 
41
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
42
-
43
- if not path.exists(cache_path):
44
- os.makedirs(cache_path, exist_ok=True)
45
 
46
  torch.backends.cuda.matmul.allow_tf32 = True
47
 
 
 
48
  class timer:
49
  def __init__(self, method_name="timed process"):
50
  self.method = method_name
@@ -55,216 +29,83 @@ class timer:
55
  end = time.time()
56
  print(f"{self.method} took {str(round(end - self.start, 2))}s")
57
 
58
- def find_cuda():
59
- cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
60
- if cuda_home and os.path.exists(cuda_home):
61
- return cuda_home
62
- nvcc_path = shutil.which('nvcc')
63
- if nvcc_path:
64
- cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
65
- return cuda_path
66
- return None
67
-
68
- cuda_path = find_cuda()
69
- if cuda_path:
70
- print(f"CUDA installation found at: {cuda_path}")
71
- else:
72
- print("CUDA installation not found")
73
-
74
-
75
- dtype = torch.bfloat16
76
- device = "cuda" if torch.cuda.is_available() else "cpu"
77
-
78
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
79
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1, token=huggingface_token).to("cuda")
80
- torch.cuda.empty_cache()
81
-
82
- # Load and fuse LoRA BEFORE quantizing
83
- print('Loading and fusing lora, please wait...')
84
- lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
85
- pipe.load_lora_weights(lora_path)
86
- pipe.fuse_lora(lora_scale=1.0)
87
- pipe.unload_lora_weights()
88
- pipe.enable_model_cpu_offload()
89
-
90
-
91
- # Load 3D generation models
92
- config_path = 'configs/instant-mesh-large.yaml'
93
- config = OmegaConf.load(config_path)
94
- config_name = os.path.basename(config_path).replace('.yaml', '')
95
- model_config = config.model_config
96
- infer_config = config.infer_config
97
-
98
- IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
99
-
100
- # Load diffusion model for 3D generation
101
- print('Loading diffusion model ...')
102
- pipeline = DiffusionPipeline.from_pretrained(
103
- "sudo-ai/zero123plus-v1.2",
104
- custom_pipeline="zero123plus",
105
- torch_dtype=torch.float16,
106
- )
107
- pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
108
- pipeline.scheduler.config, timestep_spacing='trailing'
109
- )
110
-
111
- # Load custom white-background UNet
112
- unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
113
- state_dict = torch.load(unet_ckpt_path, map_location='cpu')
114
- pipeline.unet.load_state_dict(state_dict, strict=True)
115
-
116
- pipeline = pipeline.to(device)
117
-
118
- # Load reconstruction model
119
- print('Loading reconstruction model ...')
120
- model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
121
- model = instantiate_from_config(model_config)
122
- state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
123
- state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
124
- model.load_state_dict(state_dict, strict=True)
125
-
126
- model = model.to(device)
127
-
128
- print('Loading Finished!')
129
-
130
- def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
131
- c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
132
- if is_flexicubes:
133
- cameras = torch.linalg.inv(c2ws)
134
- cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
135
- else:
136
- extrinsics = c2ws.flatten(-2)
137
- intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
138
- cameras = torch.cat([extrinsics, intrinsics], dim=-1)
139
- cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
140
- return cameras
141
-
142
- def preprocess(input_image, do_remove_background):
143
- rembg_session = rembg.new_session() if do_remove_background else None
144
- if do_remove_background:
145
- input_image = remove_background(input_image, rembg_session)
146
- input_image = resize_foreground(input_image, 0.85)
147
- return input_image
148
-
149
- ts_cutoff = 2
150
-
151
- @spaces.GPU
152
- def generate_flux_image(prompt, height, width, steps, scales, seed):
153
- return pipe(
154
- prompt=prompt,
155
- width=int(height),
156
- height=int(width),
157
- num_inference_steps=int(steps),
158
- generator=torch.Generator().manual_seed(int(seed)),
159
- guidance_scale=float(scales),
160
- timestep_to_start_cfg=ts_cutoff,
161
- ).images[0]
162
-
163
-
164
- @spaces.GPU
165
- def generate_mvs(input_image, sample_steps, sample_seed):
166
- seed_everything(sample_seed)
167
- z123_image = pipeline(
168
- input_image,
169
- num_inference_steps=sample_steps
170
- ).images[0]
171
- show_image = np.asarray(z123_image, dtype=np.uint8)
172
- show_image = torch.from_numpy(show_image)
173
- show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
174
- show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
175
- show_image = Image.fromarray(show_image.numpy())
176
- return z123_image, show_image
177
-
178
- @spaces.GPU
179
- def make3d(images):
180
- global model
181
- if IS_FLEXICUBES:
182
- model.init_flexicubes_geometry(device, use_renderer=False)
183
- model = model.eval()
184
-
185
- images = np.asarray(images, dtype=np.float32) / 255.0
186
- images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
187
- images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
188
-
189
- input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
190
- render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
191
-
192
- images = images.unsqueeze(0).to(device)
193
- images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
194
-
195
- mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
196
- mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
197
- mesh_dirname = os.path.dirname(mesh_fpath)
198
- mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
199
 
200
- with torch.no_grad():
201
- planes = model.forward_planes(images, input_cameras)
202
- mesh_out = model.extract_mesh(
203
- planes,
204
- use_texture_map=False,
205
- **infer_config,
206
- )
207
- vertices, faces, vertex_colors = mesh_out
208
- vertices = vertices[:, [1, 2, 0]]
209
- save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
210
- save_obj(vertices, faces, vertex_colors, mesh_fpath)
211
-
212
- return mesh_fpath, mesh_glb_fpath
213
 
214
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
215
  gr.Markdown(
216
  """
217
  <div style="text-align: center; max-width: 650px; margin: 0 auto;">
218
- <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem;">Flux Image to 3D Model Generator</h1>
 
219
  </div>
220
  """
221
  )
222
 
223
  with gr.Row():
224
  with gr.Column(scale=3):
225
- prompt = gr.Textbox(
226
- label="Your Image Description",
227
- placeholder="E.g., A serene landscape with mountains and a lake at sunset",
228
- lines=3
229
- )
230
-
231
- with gr.Accordion("Advanced Settings", open=False):
232
- with gr.Group():
233
- with gr.Row():
234
- height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
235
- width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
236
-
237
- with gr.Row():
238
- steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
239
- scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
240
-
241
- seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
242
-
243
- generate_btn = gr.Button("Generate 3D Model", variant="primary")
 
244
 
245
  with gr.Column(scale=4):
246
- flux_output = gr.Image(label="Generated Flux Image")
247
- mv_show_images = gr.Image(label="Generated Multi-views")
248
- with gr.Row():
249
- with gr.Tab("OBJ"):
250
- output_model_obj = gr.Model3D(label="Output Model (OBJ Format)")
251
- with gr.Tab("GLB"):
252
- output_model_glb = gr.Model3D(label="Output Model (GLB Format)")
253
-
254
- mv_images = gr.State()
 
 
 
 
 
 
255
 
256
- def process_pipeline(prompt, height, width, steps, scales, seed):
257
- flux_image = generate_flux_image(prompt, height, width, steps, scales, seed)
258
- processed_image = preprocess(flux_image, do_remove_background=True)
259
- mv_images, show_image = generate_mvs(processed_image, steps, seed)
260
- obj_path, glb_path = make3d(mv_images)
261
- return flux_image, show_image, obj_path, glb_path
 
 
 
 
 
 
 
262
 
263
  generate_btn.click(
264
- fn=process_pipeline,
265
- inputs=[prompt, height, width, steps, scales, seed],
266
- outputs=[flux_output, mv_show_images, output_model_obj, output_model_glb]
267
  )
268
 
269
  if __name__ == "__main__":
270
- demo.launch()
 
5
  from os import path
6
  from safetensors.torch import load_file
7
  from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
9
  cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
10
  os.environ["TRANSFORMERS_CACHE"] = cache_path
11
  os.environ["HF_HUB_CACHE"] = cache_path
12
  os.environ["HF_HOME"] = cache_path
13
 
14
+ import gradio as gr
15
+ import torch
16
+ from diffusers import FluxPipeline
 
17
 
18
  torch.backends.cuda.matmul.allow_tf32 = True
19
 
20
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
21
+
22
  class timer:
23
  def __init__(self, method_name="timed process"):
24
  self.method = method_name
 
29
  end = time.time()
30
  print(f"{self.method} took {str(round(end - self.start, 2))}s")
31
 
32
+ if not path.exists(cache_path):
33
+ os.makedirs(cache_path, exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=huggingface_token)
36
+ pipe.load_lora_weights(hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors"))
37
+ pipe.fuse_lora(lora_scale=1)
38
+ pipe.to(device="cuda", dtype=torch.bfloat16)
 
 
 
 
 
 
 
 
 
39
 
40
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
41
  gr.Markdown(
42
  """
43
  <div style="text-align: center; max-width: 650px; margin: 0 auto;">
44
+ <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
45
+ <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
46
  </div>
47
  """
48
  )
49
 
50
  with gr.Row():
51
  with gr.Column(scale=3):
52
+ with gr.Group():
53
+ prompt = gr.Textbox(
54
+ label="Your Image Description",
55
+ placeholder="E.g., A serene landscape with mountains and a lake at sunset",
56
+ lines=3
57
+ )
58
+
59
+ with gr.Accordion("Advanced Settings", open=False):
60
+ with gr.Group():
61
+ with gr.Row():
62
+ height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
63
+ width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
64
+
65
+ with gr.Row():
66
+ steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
67
+ scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
68
+
69
+ seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
70
+
71
+ generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
72
 
73
  with gr.Column(scale=4):
74
+ output = gr.Image(label="Your Generated Image")
75
+
76
+ gr.Markdown(
77
+ """
78
+ <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
79
+ <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
80
+ <ol style="padding-left: 1.5rem;">
81
+ <li>Enter a detailed description of the image you want to create.</li>
82
+ <li>Adjust advanced settings if desired (tap to expand).</li>
83
+ <li>Tap "Generate Image" and wait for your creation!</li>
84
+ </ol>
85
+ <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
86
+ </div>
87
+ """
88
+ )
89
 
90
+ @spaces.GPU
91
+ def process_image(height, width, steps, scales, prompt, seed):
92
+ global pipe
93
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
94
+ return pipe(
95
+ prompt=[prompt],
96
+ generator=torch.Generator().manual_seed(int(seed)),
97
+ num_inference_steps=int(steps),
98
+ guidance_scale=float(scales),
99
+ height=int(height),
100
+ width=int(width),
101
+ max_sequence_length=256
102
+ ).images[0]
103
 
104
  generate_btn.click(
105
+ process_image,
106
+ inputs=[height, width, steps, scales, prompt, seed],
107
+ outputs=output
108
  )
109
 
110
  if __name__ == "__main__":
111
+ demo.launch()