Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
c3d416d
1
Parent(s):
03dc1fe
lora
Browse files
app.py
CHANGED
@@ -1,27 +1,20 @@
|
|
1 |
import spaces
|
2 |
-
import argparse
|
3 |
import os
|
4 |
import time
|
5 |
from os import path
|
6 |
-
from safetensors.torch import load_file
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
import imageio
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
import rembg
|
12 |
from PIL import Image
|
13 |
from torchvision.transforms import v2
|
|
|
14 |
from pytorch_lightning import seed_everything
|
15 |
from omegaconf import OmegaConf
|
16 |
-
from einops import rearrange, repeat
|
17 |
-
from tqdm import tqdm
|
18 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
19 |
import gradio as gr
|
20 |
import shutil
|
21 |
import tempfile
|
22 |
-
from functools import partial
|
23 |
-
from optimum.quanto import quantize, qfloat8, freeze
|
24 |
-
from diffusers import FluxPipeline
|
25 |
from src.utils.train_util import instantiate_from_config
|
26 |
from src.utils.camera_util import (
|
27 |
FOV_to_intrinsics,
|
@@ -30,6 +23,9 @@ from src.utils.camera_util import (
|
|
30 |
)
|
31 |
from src.utils.mesh_util import save_obj, save_glb
|
32 |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
|
|
|
|
|
|
33 |
|
34 |
# Set up cache path
|
35 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
@@ -71,19 +67,11 @@ else:
|
|
71 |
print("CUDA installation not found")
|
72 |
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
file_flux = hf_hub_download("marduk191/Flux.1_collection", "flux.1_dev_8x8_e4m3fn-marduk191.safetensors")
|
78 |
-
pipe = FluxPipeline.from_single_file(file_flux, torch_dtype=torch.bfloat16, token=huggingface_token)
|
79 |
-
|
80 |
-
# Load and fuse LoRA BEFORE quantizing
|
81 |
-
print('Loading and fusing lora, please wait...')
|
82 |
-
lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors")
|
83 |
-
pipe.load_lora_weights(lora_path)
|
84 |
-
pipe.fuse_lora(lora_scale=1.0)
|
85 |
-
pipe.unload_lora_weights()
|
86 |
|
|
|
87 |
|
88 |
# Load 3D generation models
|
89 |
config_path = 'configs/instant-mesh-large.yaml'
|
@@ -143,20 +131,7 @@ def preprocess(input_image, do_remove_background):
|
|
143 |
input_image = resize_foreground(input_image, 0.85)
|
144 |
return input_image
|
145 |
|
146 |
-
ts_cutoff = 2
|
147 |
|
148 |
-
@spaces.GPU
|
149 |
-
def generate_flux_image(prompt, height, width, steps, scales, seed):
|
150 |
-
pipe.to(device)
|
151 |
-
return pipe(
|
152 |
-
prompt=prompt,
|
153 |
-
width=int(height),
|
154 |
-
height=int(width),
|
155 |
-
num_inference_steps=int(steps),
|
156 |
-
generator=torch.Generator().manual_seed(int(seed)),
|
157 |
-
guidance_scale=float(scales),
|
158 |
-
timestep_to_start_cfg=ts_cutoff,
|
159 |
-
).images[0]
|
160 |
|
161 |
|
162 |
@spaces.GPU
|
@@ -209,6 +184,45 @@ def make3d(images):
|
|
209 |
|
210 |
return mesh_fpath, mesh_glb_fpath
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
213 |
gr.Markdown(
|
214 |
"""
|
@@ -236,7 +250,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
236 |
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
|
237 |
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
|
238 |
|
239 |
-
seed = gr.Number(label="Seed
|
|
|
240 |
|
241 |
generate_btn = gr.Button("Generate 3D Model", variant="primary")
|
242 |
|
@@ -251,8 +266,13 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
251 |
|
252 |
mv_images = gr.State()
|
253 |
|
254 |
-
def process_pipeline(prompt, height, width, steps, scales, seed):
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
processed_image = preprocess(flux_image, do_remove_background=True)
|
257 |
mv_images, show_image = generate_mvs(processed_image, steps, seed)
|
258 |
obj_path, glb_path = make3d(mv_images)
|
@@ -260,7 +280,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
260 |
|
261 |
generate_btn.click(
|
262 |
fn=process_pipeline,
|
263 |
-
inputs=[prompt, height, width, steps, scales, seed],
|
264 |
outputs=[flux_output, mv_show_images, output_model_obj, output_model_glb]
|
265 |
)
|
266 |
|
|
|
1 |
import spaces
|
|
|
2 |
import os
|
3 |
import time
|
4 |
from os import path
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
import rembg
|
9 |
from PIL import Image
|
10 |
from torchvision.transforms import v2
|
11 |
+
from einops import rearrange
|
12 |
from pytorch_lightning import seed_everything
|
13 |
from omegaconf import OmegaConf
|
|
|
|
|
14 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
15 |
import gradio as gr
|
16 |
import shutil
|
17 |
import tempfile
|
|
|
|
|
|
|
18 |
from src.utils.train_util import instantiate_from_config
|
19 |
from src.utils.camera_util import (
|
20 |
FOV_to_intrinsics,
|
|
|
23 |
)
|
24 |
from src.utils.mesh_util import save_obj, save_glb
|
25 |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
26 |
+
import random
|
27 |
+
import requests
|
28 |
+
import io
|
29 |
|
30 |
# Set up cache path
|
31 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
|
|
67 |
print("CUDA installation not found")
|
68 |
|
69 |
|
70 |
+
API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
71 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
72 |
+
timeout = 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
device = 'cuda'
|
75 |
|
76 |
# Load 3D generation models
|
77 |
config_path = 'configs/instant-mesh-large.yaml'
|
|
|
131 |
input_image = resize_foreground(input_image, 0.85)
|
132 |
return input_image
|
133 |
|
|
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
|
137 |
@spaces.GPU
|
|
|
184 |
|
185 |
return mesh_fpath, mesh_glb_fpath
|
186 |
|
187 |
+
# Remove the FluxPipeline setup and replace with the query function
|
188 |
+
def query(prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024):
|
189 |
+
if not prompt:
|
190 |
+
return None
|
191 |
+
|
192 |
+
lora_id = "gokaygokay/Flux-Game-Assets-LoRA-v2"
|
193 |
+
API_URL = f"https://api-inference.huggingface.co/models/{lora_id}"
|
194 |
+
|
195 |
+
if randomize_seed:
|
196 |
+
seed = random.randint(1, 4294967296)
|
197 |
+
|
198 |
+
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
199 |
+
|
200 |
+
payload = {
|
201 |
+
"inputs": prompt,
|
202 |
+
"steps": steps,
|
203 |
+
"cfg_scale": cfg_scale,
|
204 |
+
"seed": seed,
|
205 |
+
"parameters": {
|
206 |
+
"width": width,
|
207 |
+
"height": height
|
208 |
+
}
|
209 |
+
}
|
210 |
+
|
211 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=100)
|
212 |
+
if response.status_code != 200:
|
213 |
+
if response.status_code == 503:
|
214 |
+
raise gr.Error("The model is being loaded")
|
215 |
+
raise gr.Error(f"Error {response.status_code}")
|
216 |
+
|
217 |
+
try:
|
218 |
+
image_bytes = response.content
|
219 |
+
image = Image.open(io.BytesIO(image_bytes))
|
220 |
+
return image
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Error when trying to open the image: {e}")
|
223 |
+
return None
|
224 |
+
|
225 |
+
# Update the Gradio interface
|
226 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
227 |
gr.Markdown(
|
228 |
"""
|
|
|
250 |
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
|
251 |
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
|
252 |
|
253 |
+
seed = gr.Number(label="Seed", value=-1, precision=0)
|
254 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
255 |
|
256 |
generate_btn = gr.Button("Generate 3D Model", variant="primary")
|
257 |
|
|
|
266 |
|
267 |
mv_images = gr.State()
|
268 |
|
269 |
+
def process_pipeline(prompt, height, width, steps, scales, seed, randomize_seed):
|
270 |
+
# Generate Flux image using the API
|
271 |
+
prompt_real = f"wbgmsst, {prompt}, white background"
|
272 |
+
flux_image = query(prompt_real, steps, scales, randomize_seed, seed, width, height)
|
273 |
+
if flux_image is None:
|
274 |
+
raise gr.Error("Failed to generate image")
|
275 |
+
|
276 |
processed_image = preprocess(flux_image, do_remove_background=True)
|
277 |
mv_images, show_image = generate_mvs(processed_image, steps, seed)
|
278 |
obj_path, glb_path = make3d(mv_images)
|
|
|
280 |
|
281 |
generate_btn.click(
|
282 |
fn=process_pipeline,
|
283 |
+
inputs=[prompt, height, width, steps, scales, seed, randomize_seed],
|
284 |
outputs=[flux_output, mv_show_images, output_model_obj, output_model_glb]
|
285 |
)
|
286 |
|