Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,179 +1,174 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
import spaces
|
|
|
5 |
import torch
|
6 |
-
from
|
7 |
-
from transformers import
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
import os
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
MAX_IMAGE_SIZE = 2048
|
15 |
-
# Set up environment variables and device
|
16 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
17 |
-
dtype = torch.bfloat16
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
pipe = FluxPipeline.from_pretrained(
|
33 |
"black-forest-labs/FLUX.1-dev",
|
34 |
-
|
35 |
-
|
36 |
token=huggingface_token
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
if randomize_seed:
|
67 |
seed = random.randint(0, MAX_SEED)
|
68 |
-
generator = torch.Generator().manual_seed(seed)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
margin: 0 auto;
|
91 |
-
max-width: 520px;
|
92 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
"""
|
94 |
|
95 |
-
with gr.Blocks(css=
|
|
|
96 |
|
97 |
-
with gr.
|
98 |
-
gr.
|
99 |
-
|
100 |
-
|
101 |
-
""")
|
102 |
-
|
103 |
-
with gr.Row():
|
104 |
-
|
105 |
-
prompt = gr.Text(
|
106 |
-
label="Prompt",
|
107 |
-
show_label=False,
|
108 |
-
max_lines=1,
|
109 |
-
placeholder="Enter your prompt",
|
110 |
-
container=False,
|
111 |
-
)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
label="
|
121 |
-
minimum=
|
122 |
-
maximum=MAX_SEED,
|
123 |
-
step=1,
|
124 |
-
value=0,
|
125 |
-
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
|
131 |
-
width = gr.Slider(
|
132 |
-
label="Width",
|
133 |
-
minimum=256,
|
134 |
-
maximum=MAX_IMAGE_SIZE,
|
135 |
-
step=32,
|
136 |
-
value=1024,
|
137 |
-
)
|
138 |
-
|
139 |
-
height = gr.Slider(
|
140 |
-
label="Height",
|
141 |
-
minimum=256,
|
142 |
-
maximum=MAX_IMAGE_SIZE,
|
143 |
-
step=32,
|
144 |
-
value=1024,
|
145 |
-
)
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
guidance_scale = gr.Slider(
|
149 |
-
label="Guidance Scale",
|
150 |
-
minimum=1,
|
151 |
-
maximum=15,
|
152 |
-
step=0.1,
|
153 |
-
value=3.5,
|
154 |
-
)
|
155 |
-
|
156 |
-
num_inference_steps = gr.Slider(
|
157 |
-
label="Number of inference steps",
|
158 |
-
minimum=1,
|
159 |
-
maximum=50,
|
160 |
-
step=1,
|
161 |
-
value=28,
|
162 |
-
)
|
163 |
|
164 |
-
gr.
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
outputs=[
|
177 |
)
|
178 |
|
179 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
import os
|
10 |
+
import subprocess
|
11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
+
# Initialize models
|
|
|
|
|
|
|
|
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
dtype = torch.bfloat16
|
16 |
|
17 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from optimum.quanto import QuantizedDiffusersModel
|
21 |
+
|
22 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
23 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
24 |
+
|
25 |
+
|
26 |
+
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
|
27 |
+
base_class = FluxTransformer2DModel
|
28 |
|
29 |
+
|
30 |
+
transformer = QuantizedFluxTransformer2DModel.from_pretrained("Kijai/flux-fp8")
|
31 |
+
transformer.to(device="cuda", dtype=torch.bfloat16)
|
32 |
|
33 |
pipe = FluxPipeline.from_pretrained(
|
34 |
"black-forest-labs/FLUX.1-dev",
|
35 |
+
transformer=None,
|
36 |
+
torch_dtype=torch.bfloat16,
|
37 |
token=huggingface_token
|
38 |
+
)
|
39 |
+
|
40 |
+
pipe.transformer = transformer
|
41 |
+
|
42 |
+
# Initialize Florence model
|
43 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
44 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
45 |
+
|
46 |
+
# Prompt Enhancer
|
47 |
+
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
48 |
+
|
49 |
+
MAX_SEED = np.iinfo(np.int32).max
|
50 |
+
MAX_IMAGE_SIZE = 2048
|
51 |
+
|
52 |
+
# Florence caption function
|
53 |
+
@spaces.GPU
|
54 |
+
def florence_caption(image):
|
55 |
+
# Convert image to PIL if it's not already
|
56 |
+
if not isinstance(image, Image.Image):
|
57 |
+
image = Image.fromarray(image)
|
58 |
+
|
59 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
60 |
+
generated_ids = florence_model.generate(
|
61 |
+
input_ids=inputs["input_ids"],
|
62 |
+
pixel_values=inputs["pixel_values"],
|
63 |
+
max_new_tokens=1024,
|
64 |
+
early_stopping=False,
|
65 |
+
do_sample=False,
|
66 |
+
num_beams=3,
|
67 |
+
)
|
68 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
69 |
+
parsed_answer = florence_processor.post_process_generation(
|
70 |
+
generated_text,
|
71 |
+
task="<MORE_DETAILED_CAPTION>",
|
72 |
+
image_size=(image.width, image.height)
|
73 |
+
)
|
74 |
+
return parsed_answer["<MORE_DETAILED_CAPTION>"]
|
75 |
+
|
76 |
+
# Prompt Enhancer function
|
77 |
+
def enhance_prompt(input_prompt):
|
78 |
+
result = enhancer_long("Enhance the description: " + input_prompt)
|
79 |
+
enhanced_text = result[0]['summary_text']
|
80 |
+
return enhanced_text
|
81 |
+
|
82 |
+
@spaces.GPU(duration=190)
|
83 |
+
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
84 |
+
if image is not None:
|
85 |
+
# Convert image to PIL if it's not already
|
86 |
+
if not isinstance(image, Image.Image):
|
87 |
+
image = Image.fromarray(image)
|
88 |
+
|
89 |
+
prompt = florence_caption(image)
|
90 |
+
print(prompt)
|
91 |
+
else:
|
92 |
+
prompt = text_prompt
|
93 |
+
|
94 |
+
if use_enhancer:
|
95 |
+
prompt = enhance_prompt(prompt)
|
96 |
+
|
97 |
if randomize_seed:
|
98 |
seed = random.randint(0, MAX_SEED)
|
|
|
99 |
|
100 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
101 |
+
|
102 |
+
image = pipe(
|
103 |
+
prompt=prompt,
|
104 |
+
generator=generator,
|
105 |
+
num_inference_steps=num_inference_steps,
|
106 |
+
width=width,
|
107 |
+
height=height,
|
108 |
+
guidance_scale=guidance_scale
|
109 |
+
).images[0]
|
110 |
+
|
111 |
+
return image, prompt, seed
|
112 |
+
|
113 |
+
custom_css = """
|
114 |
+
.input-group, .output-group {
|
115 |
+
border: 1px solid #e0e0e0;
|
116 |
+
border-radius: 10px;
|
117 |
+
padding: 20px;
|
118 |
+
margin-bottom: 20px;
|
119 |
+
background-color: #f9f9f9;
|
|
|
|
|
120 |
}
|
121 |
+
.submit-btn {
|
122 |
+
background-color: #2980b9 !important;
|
123 |
+
color: white !important;
|
124 |
+
}
|
125 |
+
.submit-btn:hover {
|
126 |
+
background-color: #3498db !important;
|
127 |
+
}
|
128 |
+
"""
|
129 |
+
|
130 |
+
title = """<h1 align="center">FLUX.1-dev with Florence-2 Captioner and Prompt Enhancer</h1>
|
131 |
+
<p><center>
|
132 |
+
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
|
133 |
+
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
|
134 |
+
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
|
135 |
+
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
|
136 |
+
</center></p>
|
137 |
"""
|
138 |
|
139 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
|
140 |
+
gr.HTML(title)
|
141 |
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column(scale=1):
|
144 |
+
with gr.Group(elem_classes="input-group"):
|
145 |
+
input_image = gr.Image(label="Input Image (Florence-2 Captioner)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
with gr.Accordion("Advanced Settings", open=False):
|
148 |
+
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
|
149 |
+
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
|
150 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
151 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
152 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
153 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
154 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
155 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
with gr.Group(elem_classes="output-group"):
|
161 |
+
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
|
162 |
+
final_prompt = gr.Textbox(label="Final Prompt Used")
|
163 |
+
used_seed = gr.Number(label="Seed Used")
|
164 |
+
|
165 |
+
generate_btn.click(
|
166 |
+
fn=process_workflow,
|
167 |
+
inputs=[
|
168 |
+
input_image, text_prompt, use_enhancer, seed, randomize_seed,
|
169 |
+
width, height, guidance_scale, num_inference_steps
|
170 |
+
],
|
171 |
+
outputs=[output_image, final_prompt, used_seed]
|
172 |
)
|
173 |
|
174 |
+
demo.launch(debug=True)
|