Spaces:
Building
Building
File size: 4,102 Bytes
a786c9d f0d2f19 ee8b38f d16d3b3 0fed4fb 8cff3c1 a786c9d 0fed4fb a786c9d f0d2f19 da4f263 f0d2f19 da4f263 f0d2f19 a786c9d f0d2f19 3dd38da a786c9d 0fed4fb a786c9d 0fed4fb a786c9d f0d2f19 a786c9d 0fed4fb a786c9d 0fed4fb a786c9d 0fed4fb fd2be56 a786c9d 0fed4fb a786c9d 0fed4fb da4f263 0fed4fb da4f263 a786c9d 0fed4fb a786c9d da4f263 a786c9d da4f263 a786c9d da4f263 0fed4fb 8837a99 a786c9d 3f51add a786c9d 0fed4fb 7c89955 fd2be56 7c89955 da4f263 7df1bda 4c6d55a 1f23827 983182b dfd696d 0fed4fb dfd696d 3dd38da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import pandas as pd
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import gradio as gr
# Carga los datos de entrenamiento
df = pd.read_csv('./botreformasconstrucciones.csv')
# Crea un arreglo con los contextos
context_data = []
for i in range(len(df)):
context = ""
for j in range(3):
context += df.columns[j]
context += ": "
context += df.iloc[i, j] # Cambia esto
context += " "
context_data.append(context)
# Importa las bibliotecas necesarias
import os
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
# Obtiene la clave de API de Groq
groq_key = os.environ.get('groq_api_keys')
# Crea un objeto ChatGroq con el modelo de lenguaje
llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_key)
# Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# Crea un objeto Chroma con el nombre de la colecci贸n
vectorstore = Chroma(
collection_name="reformas_construccion_juancarlos_y_yoises",
embedding_function=embed_model,
)
# Agrega los textos a la colecci贸n
vectorstore.add_texts(context_data)
# Crea un objeto retriever con la colecci贸n
retriever = vectorstore.as_retriever()
# Crea un objeto PromptTemplate con el prompt
template = ("""Tu eres un experto asistente de Gnostic Dev, especializado en desarrollo web, dise帽o de p谩ginas web, plataformas e-commerce y aplicaciones con inteligencia artificial. Debes responder a preguntas t茅cnicas de posibles clientes de manera clara y concisa, proporcionando soluciones efectivas y personalizadas. Recuerda que para cualquier duda o consulta adicional, los clientes pueden contactar conmigo a trav茅s del chat que se encuentra en la parte inferior derecha de la pantalla, y me pondr茅 en contacto con ellos lo antes posible. Destaca las ventajas de contratar mis servicios como freelancer, incluyendo precios competitivos, soporte t茅cnico personalizado e ilimitado, y la inclusi贸n de una versi贸n APK como aplicaci贸n para Android para cada proyecto web, as铆 como un chatbot y asistente. Adem谩s, resalta mi experiencia y habilidades en el desarrollo de soluciones web personalizadas y mi compromiso con la satisfacci贸n del cliente.
Context: {context}
Question: {question}
Answer:""")
# Crea un objeto rag_prompt con el prompt
rag_prompt = PromptTemplate.from_template(template)
# Crea un objeto StrOutputParser para parsear la salida
from langchain_core.output_parsers import StrOutputParser
# Crea un objeto RunnablePassthrough para ejecutar el modelo
from langchain_core.runnables import RunnablePassthrough
# Crea un objeto rag_chain con el modelo y el prompt
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
# Importa la biblioteca Gradio
import gradio as gr
# Crea una funci贸n para procesar la entrada del usuario
def rag_memory_stream(message, history):
partial_text = ""
for new_text in rag_chain.stream(message):
partial_text += new_text
yield partial_text
# Crea un objeto Gradio con la funci贸n y el t铆tulo
examples = [
"驴C贸mo instalar wordpress por FTP?",
"驴Como limpiar un wordpress hackeado?",
"驴C贸mo importar productos en wooocommerce?"
]
description = "Aplicaci贸n de IA desarrollada por GnoscticDev para servirle :)"
title = "Experto en desarrollo web"
demo = gr.ChatInterface(fn=rag_memory_stream,
type="messages",
title=title,
description=description,
fill_height=True,
examples=examples,
theme="glass",
)
# Lanza la aplicaci贸n
if __name__ == "__main__":
demo.launch() |