gnosticdev commited on
Commit
f0d2f19
verified
1 Parent(s): 3afb3ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -14
app.py CHANGED
@@ -1,11 +1,11 @@
1
  import pandas as pd
 
2
  from langchain_huggingface import HuggingFaceEmbeddings
3
  from langchain_chroma import Chroma
4
  from langchain_core.prompts import PromptTemplate
5
  from langchain_core.output_parsers import StrOutputParser
6
  from langchain_core.runnables import RunnablePassthrough
7
  import gradio as gr
8
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
9
 
10
  # Carga los datos de entrenamiento
11
  df = pd.read_csv('./botreformasconstrucciones.csv')
@@ -13,27 +13,32 @@ df = pd.read_csv('./botreformasconstrucciones.csv')
13
  # Crea un arreglo con los contextos
14
  context_data = []
15
  for i in range(len(df)):
16
- context = ""
17
- for j in range(3):
18
- context += df.columns[j]
19
- context += ": "
20
- context += df.iloc[i, j] # Cambia esto
21
- context += " "
22
- context_data.append(context)
 
 
 
 
 
 
23
 
24
- # Crea el tokenizer y el modelo de Llama-2
25
- tokenizer = AutoTokenizer.from_pretrained("llama-3.3-70b-versatile")
26
- model = AutoModelForCausalLM.from_pretrained("llama-3.3-70b-versatile")
27
 
28
- # Crea un pipeline para la generaci贸n de texto
29
- llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
30
 
31
  # Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
32
  embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
33
 
34
  # Crea un objeto Chroma con el nombre de la colecci贸n
35
  vectorstore = Chroma(
36
- collection_name="GnosticDev_asistente",
37
  embedding_function=embed_model,
38
  )
39
 
 
1
  import pandas as pd
2
+ from langchain_groq import ChatGroq
3
  from langchain_huggingface import HuggingFaceEmbeddings
4
  from langchain_chroma import Chroma
5
  from langchain_core.prompts import PromptTemplate
6
  from langchain_core.output_parsers import StrOutputParser
7
  from langchain_core.runnables import RunnablePassthrough
8
  import gradio as gr
 
9
 
10
  # Carga los datos de entrenamiento
11
  df = pd.read_csv('./botreformasconstrucciones.csv')
 
13
  # Crea un arreglo con los contextos
14
  context_data = []
15
  for i in range(len(df)):
16
+ context = ""
17
+ for j in range(3):
18
+ context += df.columns[j]
19
+ context += ": "
20
+ context += df.iloc[i, j] # Cambia esto
21
+ context += " "
22
+ context_data.append(context)
23
+
24
+ # Importa las bibliotecas necesarias
25
+ import os
26
+ from langchain_groq import ChatGroq
27
+ from langchain_huggingface import HuggingFaceEmbeddings
28
+ from langchain_chroma import Chroma
29
 
30
+ # Obtiene la clave de API de Groq
31
+ groq_key = os.environ.get('groq_api_keys')
 
32
 
33
+ # Crea un objeto ChatGroq con el modelo de lenguaje
34
+ llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_key)
35
 
36
  # Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
37
  embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
38
 
39
  # Crea un objeto Chroma con el nombre de la colecci贸n
40
  vectorstore = Chroma(
41
+ collection_name="reformas_construccion_juancarlos_y_yoises",
42
  embedding_function=embed_model,
43
  )
44