Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import pandas as pd
|
|
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
from langchain_chroma import Chroma
|
4 |
from langchain_core.prompts import PromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain_core.runnables import RunnablePassthrough
|
7 |
import gradio as gr
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
|
10 |
# Carga los datos de entrenamiento
|
11 |
df = pd.read_csv('./botreformasconstrucciones.csv')
|
@@ -13,27 +13,32 @@ df = pd.read_csv('./botreformasconstrucciones.csv')
|
|
13 |
# Crea un arreglo con los contextos
|
14 |
context_data = []
|
15 |
for i in range(len(df)):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
model = AutoModelForCausalLM.from_pretrained("llama-3.3-70b-versatile")
|
27 |
|
28 |
-
# Crea un
|
29 |
-
llm =
|
30 |
|
31 |
# Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
|
32 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
33 |
|
34 |
# Crea un objeto Chroma con el nombre de la colecci贸n
|
35 |
vectorstore = Chroma(
|
36 |
-
collection_name="
|
37 |
embedding_function=embed_model,
|
38 |
)
|
39 |
|
|
|
1 |
import pandas as pd
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
from langchain_chroma import Chroma
|
5 |
from langchain_core.prompts import PromptTemplate
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
7 |
from langchain_core.runnables import RunnablePassthrough
|
8 |
import gradio as gr
|
|
|
9 |
|
10 |
# Carga los datos de entrenamiento
|
11 |
df = pd.read_csv('./botreformasconstrucciones.csv')
|
|
|
13 |
# Crea un arreglo con los contextos
|
14 |
context_data = []
|
15 |
for i in range(len(df)):
|
16 |
+
context = ""
|
17 |
+
for j in range(3):
|
18 |
+
context += df.columns[j]
|
19 |
+
context += ": "
|
20 |
+
context += df.iloc[i, j] # Cambia esto
|
21 |
+
context += " "
|
22 |
+
context_data.append(context)
|
23 |
+
|
24 |
+
# Importa las bibliotecas necesarias
|
25 |
+
import os
|
26 |
+
from langchain_groq import ChatGroq
|
27 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
28 |
+
from langchain_chroma import Chroma
|
29 |
|
30 |
+
# Obtiene la clave de API de Groq
|
31 |
+
groq_key = os.environ.get('groq_api_keys')
|
|
|
32 |
|
33 |
+
# Crea un objeto ChatGroq con el modelo de lenguaje
|
34 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
35 |
|
36 |
# Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
|
37 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
38 |
|
39 |
# Crea un objeto Chroma con el nombre de la colecci贸n
|
40 |
vectorstore = Chroma(
|
41 |
+
collection_name="reformas_construccion_juancarlos_y_yoises",
|
42 |
embedding_function=embed_model,
|
43 |
)
|
44 |
|