Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import pandas as pd
|
2 |
|
3 |
-
|
4 |
df = pd.read_csv('./medical_data.csv')
|
5 |
|
|
|
6 |
context_data = []
|
7 |
for i in range(len(df)):
|
8 |
context = ""
|
@@ -13,50 +14,49 @@ for i in range(len(df)):
|
|
13 |
context += " "
|
14 |
context_data.append(context)
|
15 |
|
16 |
-
|
17 |
import os
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
groq_key = os.environ.get('groq_api_keys')
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
26 |
|
27 |
-
|
28 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
29 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
30 |
|
31 |
-
#
|
32 |
-
from langchain_chroma import Chroma
|
33 |
-
|
34 |
vectorstore = Chroma(
|
35 |
-
collection_name="
|
36 |
embedding_function=embed_model,
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
vectorstore.add_texts(context_data)
|
41 |
|
|
|
42 |
retriever = vectorstore.as_retriever()
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
template = ("""tu eres un experto en mecanica automotriz, puedes hablar de mas cosas, cuando te pregunten por algo relacionado a los vehiculos o motores
|
47 |
-
debes responder pidiendo la marva y modelo de auto, luego pediras la fecha, y pediras que te digan los sintomas, tu les daras soluciones.
|
48 |
-
|
49 |
Context: {context}
|
50 |
-
|
51 |
Question: {question}
|
52 |
-
|
53 |
Answer:""")
|
54 |
|
|
|
55 |
rag_prompt = PromptTemplate.from_template(template)
|
56 |
|
|
|
57 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
|
58 |
from langchain_core.runnables import RunnablePassthrough
|
59 |
|
|
|
60 |
rag_chain = (
|
61 |
{"context": retriever, "question": RunnablePassthrough()}
|
62 |
| rag_prompt
|
@@ -64,23 +64,23 @@ rag_chain = (
|
|
64 |
| StrOutputParser()
|
65 |
)
|
66 |
|
|
|
67 |
import gradio as gr
|
68 |
|
|
|
69 |
def rag_memory_stream(message, history):
|
70 |
partial_text = ""
|
71 |
for new_text in rag_chain.stream(message):
|
72 |
partial_text += new_text
|
73 |
yield partial_text
|
74 |
|
|
|
75 |
examples = [
|
76 |
-
"
|
77 |
-
"
|
78 |
]
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
title = "Medical Expert :) Try me!"
|
84 |
demo = gr.ChatInterface(fn=rag_memory_stream,
|
85 |
type="messages",
|
86 |
title=title,
|
@@ -90,6 +90,6 @@ demo = gr.ChatInterface(fn=rag_memory_stream,
|
|
90 |
theme="glass",
|
91 |
)
|
92 |
|
93 |
-
|
94 |
if __name__ == "__main__":
|
95 |
-
demo.launch()
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
# Carga los datos de entrenamiento
|
4 |
df = pd.read_csv('./medical_data.csv')
|
5 |
|
6 |
+
# Crea un arreglo con los contextos
|
7 |
context_data = []
|
8 |
for i in range(len(df)):
|
9 |
context = ""
|
|
|
14 |
context += " "
|
15 |
context_data.append(context)
|
16 |
|
17 |
+
# Importa las bibliotecas necesarias
|
18 |
import os
|
19 |
+
from langchain_groq import ChatGroq
|
20 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
+
from langchain_chroma import Chroma
|
22 |
|
23 |
+
# Obtiene la clave de API de Groq
|
24 |
groq_key = os.environ.get('groq_api_keys')
|
25 |
|
26 |
+
# Crea un objeto ChatGroq con el modelo de lenguaje
|
27 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
|
|
|
|
28 |
|
29 |
+
# Crea un objeto HuggingFaceEmbeddings con el modelo de embeddings
|
|
|
30 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
31 |
|
32 |
+
# Crea un objeto Chroma con el nombre de la colecci贸n
|
|
|
|
|
33 |
vectorstore = Chroma(
|
34 |
+
collection_name="mecanica_automotriz",
|
35 |
embedding_function=embed_model,
|
36 |
)
|
37 |
|
38 |
+
# Agrega los textos a la colecci贸n
|
39 |
vectorstore.add_texts(context_data)
|
40 |
|
41 |
+
# Crea un objeto retriever con la colecci贸n
|
42 |
retriever = vectorstore.as_retriever()
|
43 |
|
44 |
+
# Crea un objeto PromptTemplate con el prompt
|
45 |
+
template = ("""Tu eres un experto en mec谩nica automotriz, puedes responder preguntas sobre coches y motores.
|
|
|
|
|
|
|
46 |
Context: {context}
|
|
|
47 |
Question: {question}
|
|
|
48 |
Answer:""")
|
49 |
|
50 |
+
# Crea un objeto rag_prompt con el prompt
|
51 |
rag_prompt = PromptTemplate.from_template(template)
|
52 |
|
53 |
+
# Crea un objeto StrOutputParser para parsear la salida
|
54 |
from langchain_core.output_parsers import StrOutputParser
|
55 |
+
|
56 |
+
# Crea un objeto RunnablePassthrough para ejecutar el modelo
|
57 |
from langchain_core.runnables import RunnablePassthrough
|
58 |
|
59 |
+
# Crea un objeto rag_chain con el modelo y el prompt
|
60 |
rag_chain = (
|
61 |
{"context": retriever, "question": RunnablePassthrough()}
|
62 |
| rag_prompt
|
|
|
64 |
| StrOutputParser()
|
65 |
)
|
66 |
|
67 |
+
# Importa la biblioteca Gradio
|
68 |
import gradio as gr
|
69 |
|
70 |
+
# Crea una funci贸n para procesar la entrada del usuario
|
71 |
def rag_memory_stream(message, history):
|
72 |
partial_text = ""
|
73 |
for new_text in rag_chain.stream(message):
|
74 |
partial_text += new_text
|
75 |
yield partial_text
|
76 |
|
77 |
+
# Crea un objeto Gradio con la funci贸n y el t铆tulo
|
78 |
examples = [
|
79 |
+
"Mi coche no arranca, 驴qu茅 puedo hacer?",
|
80 |
+
"驴C贸mo puedo cambiar el aceite de mi coche?"
|
81 |
]
|
82 |
+
description = "Aplicaci贸n de IA en tiempo real para responder preguntas sobre mec谩nica automotriz"
|
83 |
+
title = "Experto en Mec谩nica Automotriz :)"
|
|
|
|
|
|
|
84 |
demo = gr.ChatInterface(fn=rag_memory_stream,
|
85 |
type="messages",
|
86 |
title=title,
|
|
|
90 |
theme="glass",
|
91 |
)
|
92 |
|
93 |
+
# Lanza la aplicaci贸n
|
94 |
if __name__ == "__main__":
|
95 |
+
demo.launch()
|