sultan-hassan commited on
Commit
a786c9d
·
verified ·
1 Parent(s): 089863a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -58
app.py CHANGED
@@ -1,62 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
1
+ !kaggle datasets download adilmohammed/medical-data
2
+ !unzip medical-data
3
+
4
+ import pandas as pd
5
+ df = pd.read_csv('./medical_data.csv')
6
+
7
+ context_data = []
8
+ for i in range(len(df)):
9
+ context = ""
10
+ for j in range(3):
11
+ context += df.columns[j]
12
+ context += ": "
13
+ context += df.iloc[i][j]
14
+ context += " "
15
+ context_data.append(context)
16
+
17
+
18
+ import os
19
+
20
+ # Get the secret key from the environment
21
+ groq_key = os.environ.get('groq_api_keys')
22
+
23
+ ## LLM used for RAG
24
+ from langchain_groq import ChatGroq
25
+
26
+ llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
27
+
28
+ ## Embedding model!
29
+ from langchain_huggingface import HuggingFaceEmbeddings
30
+ embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
31
+
32
+ # create vector store!
33
+ from langchain_chroma import Chroma
34
+
35
+ vectorstore = Chroma(
36
+ collection_name="medical_dataset_store",
37
+ embedding_function=embed_model,
38
+ persist_directory="./",
39
+ )
40
+
41
+ # add data to vector nstore
42
+ vectorstore.add_texts(context_data)
43
+
44
+ retriever = vectorstore.as_retriever()
45
+
46
+ from langchain_core.prompts import PromptTemplate
47
+
48
+ template = ("""You are a medical expert.
49
+ Use the provided context to answer the question.
50
+ If you don't know the answer, say so. Explain your answer in detail.
51
+ Do not discuss the context in your response; just provide the answer directly.
52
+
53
+ Context: {context}
54
+
55
+ Question: {question}
56
+
57
+ Answer:""")
58
+
59
+ rag_prompt = PromptTemplate.from_template(template)
60
+
61
+ from langchain_core.output_parsers import StrOutputParser
62
+ from langchain_core.runnables import RunnablePassthrough
63
+
64
+ rag_chain = (
65
+ {"context": retriever, "question": RunnablePassthrough()}
66
+ | rag_prompt
67
+ | llm
68
+ | StrOutputParser()
69
+ )
70
+
71
  import gradio as gr
72
+
73
+ def rag_memory_stream(text):
74
+ partial_text = ""
75
+ for new_text in rag_chain.stream(text):
76
+ partial_text += new_text
77
+ yield partial_text
78
+
79
+
80
+ title = "Real-time AI App with Groq API and LangChain to Answer medical questions"
81
+ demo = gr.Interface(
82
+ title=title,
83
+ fn=rag_memory_stream,
84
+ inputs="text",
85
+ outputs="text",
86
+ allow_flagging="never",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  )
88
 
89