Spaces:
Sleeping
Sleeping
File size: 9,661 Bytes
c26ed9b a2df113 ca5a024 a2df113 c60740f c26ed9b c60740f b8a76c3 c60740f c26ed9b 7160c8d c60740f 7160c8d c60740f ca5a024 c60740f a2df113 c60740f a2df113 c60740f a2df113 c60740f a2df113 c60740f a2df113 7160c8d c60740f 2c502aa c60740f a2df113 c60740f a2df113 5e9f512 7160c8d c60740f c26ed9b c60740f c26ed9b c60740f c26ed9b c60740f c26ed9b a2df113 37a13eb c26ed9b a2df113 c26ed9b b8a76c3 37a13eb c26ed9b b8a76c3 c26ed9b b8a76c3 c26ed9b a2df113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
from tqdm import tqdm
from datasets import load_dataset
from datetime import datetime
from typing import List, Dict, Any
from torch.utils.data import DataLoader, Dataset
from functools import partial
# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize session state
if 'history' not in st.session_state:
st.session_state.history = []
if 'feedback' not in st.session_state:
st.session_state.feedback = {}
# Define subset size
SUBSET_SIZE = 500 # Starting with 500 items for quick testing
class TextDataset(Dataset):
def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
self.texts = texts
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
return self.tokenizer(
self.texts[idx],
padding='max_length',
truncation=True,
max_length=self.max_length,
return_tensors="pt"
)
@st.cache_resource
def load_data_and_model():
"""Load the dataset and model with optimized memory usage"""
try:
# Load dataset
dataset = load_dataset("frankjosh/filtered_dataset")
data = pd.DataFrame(dataset['train'])
# Take a random subset
data = data.sample(n=min(SUBSET_SIZE, len(data)), random_state=42).reset_index(drop=True)
# Combine text fields
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
# Load model and tokenizer
model_name = "Salesforce/codet5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
if torch.cuda.is_available():
model = model.to(device)
model.eval()
return data, tokenizer, model
except Exception as e:
st.error(f"Error in initialization: {str(e)}")
st.stop()
def collate_fn(batch, pad_token_id):
max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
input_ids = []
attention_mask = []
for inputs in batch:
input_ids.append(torch.nn.functional.pad(
inputs['input_ids'].squeeze(),
(0, max_length - inputs['input_ids'].shape[1]),
value=pad_token_id
))
attention_mask.append(torch.nn.functional.pad(
inputs['attention_mask'].squeeze(),
(0, max_length - inputs['attention_mask'].shape[1]),
value=0
))
return {
'input_ids': torch.stack(input_ids),
'attention_mask': torch.stack(attention_mask)
}
def generate_embeddings_batch(model, batch, device):
"""Generate embeddings for a batch of inputs"""
with torch.no_grad():
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model.encoder(**batch)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.cpu().numpy()
def precompute_embeddings(data: pd.DataFrame, model, tokenizer, batch_size: int = 16):
"""Precompute embeddings with batching and progress tracking"""
dataset = TextDataset(data['text'].tolist(), tokenizer)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
num_workers=2, # Reduced workers for smaller dataset
pin_memory=True
)
embeddings = []
total_batches = len(dataloader)
# Create a progress bar
progress_bar = st.progress(0)
status_text = st.empty()
start_time = datetime.now()
for i, batch in enumerate(dataloader):
# Generate embeddings for batch
batch_embeddings = generate_embeddings_batch(model, batch, device)
embeddings.extend(batch_embeddings)
# Update progress
progress = (i + 1) / total_batches
progress_bar.progress(progress)
# Calculate and display ETA
elapsed_time = (datetime.now() - start_time).total_seconds()
eta = (elapsed_time / (i + 1)) * (total_batches - (i + 1))
status_text.text(f"Processing batch {i+1}/{total_batches}. ETA: {int(eta)} seconds")
progress_bar.empty()
status_text.empty()
# Add embeddings to dataframe
data['embedding'] = embeddings
return data
@torch.no_grad()
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
"""Generate embedding for a single query"""
inputs = tokenizer(
query,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(device)
outputs = model.encoder(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
return embedding.squeeze()
def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
"""Find similar repositories using vectorized operations"""
similarities = cosine_similarity([query_embedding], np.stack(data['embedding'].values))[0]
data['similarity'] = similarities
return data.nlargest(top_n, 'similarity')
# Load resources
data, tokenizer, model = load_data_and_model()
# Add info about subset size
st.info(f"Running with a subset of {SUBSET_SIZE} repositories for testing purposes.")
# Precompute embeddings for the subset
data = precompute_embeddings(data, model, tokenizer)
# Main App Interface
st.title("Repository Recommender System π")
st.caption("Testing Version - Running on subset of data")
# Main interface
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
search_button = st.button("π Search Repositories", type="primary")
with col2:
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
if search_button and user_query.strip():
with st.spinner("Finding relevant repositories..."):
# Generate query embedding and get recommendations
query_embedding = generate_query_embedding(model, tokenizer, user_query)
recommendations = find_similar_repos(query_embedding, data, top_n)
# Save to history
st.session_state.history.append({
'query': user_query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': recommendations['repo'].tolist()
})
# Display recommendations
st.markdown("### π― Top Recommendations")
for idx, row in recommendations.iterrows():
st.markdown(f"#### Repository {idx + 1}: {row['repo']}")
# Repository details in columns
col1, col2 = st.columns([2, 1])
with col1:
st.markdown(f"**URL:** [View Repository]({row['url']})")
st.markdown(f"**Path:** `{row['path']}`")
with col2:
st.metric("Match Score", f"{row['similarity']:.2%}")
# Feedback buttons in columns
feedback_col1, feedback_col2 = st.columns([1, 4])
with feedback_col1:
if st.button("π", key=f"like_{idx}"):
save_feedback(row['repo'], 'likes')
st.success("Thanks for your feedback!")
if st.button("π", key=f"dislike_{idx}"):
save_feedback(row['repo'], 'dislikes')
st.success("Thanks for your feedback!")
# Case Study and Documentation in tabs instead of nested expanders
tab1, tab2 = st.tabs(["π Case Study Brief", "π Documentation"])
with tab1:
st.markdown(generate_case_study(row))
with tab2:
if row['docstring']:
st.markdown(row['docstring'])
else:
st.info("No documentation available")
st.markdown("---") # Separator between repositories
# Sidebar for History and Stats
with st.sidebar:
st.header("π Search History")
if st.session_state.history:
for idx, item in enumerate(reversed(st.session_state.history[-5:])):
st.markdown(f"**Search {len(st.session_state.history)-idx}**")
st.markdown(f"Query: _{item['query'][:30]}..._")
st.caption(f"Time: {item['timestamp']}")
st.caption(f"Results: {len(item['results'])} repositories")
if st.button("Rerun this search", key=f"rerun_{idx}"):
st.session_state.rerun_query = item['query']
st.markdown("---")
else:
st.write("No search history yet")
st.header("π Usage Statistics")
st.write(f"Total Searches: {len(st.session_state.history)}")
if st.session_state.feedback:
feedback_df = pd.DataFrame(st.session_state.feedback).T
feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
st.bar_chart(feedback_df[['likes', 'dislikes']])
# Footer
st.markdown("---")
st.markdown(
"""
Made with π€ using CodeT5 and Streamlit |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
Model: CodeT5-Small
"""
)
|