File size: 9,661 Bytes
c26ed9b
 
 
 
 
 
 
 
 
a2df113
ca5a024
a2df113
c60740f
 
 
c26ed9b
 
 
 
 
 
 
 
 
 
c60740f
b8a76c3
c60740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26ed9b
7160c8d
c60740f
7160c8d
c60740f
ca5a024
 
c60740f
 
 
 
 
a2df113
c60740f
 
 
a2df113
 
c60740f
a2df113
c60740f
 
 
 
 
a2df113
c60740f
a2df113
7160c8d
c60740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c502aa
c60740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2df113
c60740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2df113
5e9f512
7160c8d
c60740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26ed9b
c60740f
 
c26ed9b
c60740f
 
c26ed9b
c60740f
 
c26ed9b
 
a2df113
37a13eb
 
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2df113
c26ed9b
 
b8a76c3
37a13eb
c26ed9b
 
 
 
 
 
 
 
 
 
 
b8a76c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26ed9b
b8a76c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26ed9b
 
 
 
 
 
 
 
 
a2df113
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import warnings
warnings.filterwarnings('ignore')

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
from tqdm import tqdm
from datasets import load_dataset
from datetime import datetime
from typing import List, Dict, Any
from torch.utils.data import DataLoader, Dataset
from functools import partial

# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Initialize session state
if 'history' not in st.session_state:
    st.session_state.history = []
if 'feedback' not in st.session_state:
    st.session_state.feedback = {}

# Define subset size
SUBSET_SIZE = 500 # Starting with 500 items for quick testing

class TextDataset(Dataset):
    def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
        self.texts = texts
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        return self.tokenizer(
            self.texts[idx],
            padding='max_length',
            truncation=True,
            max_length=self.max_length,
            return_tensors="pt"
        )

@st.cache_resource
def load_data_and_model():
    """Load the dataset and model with optimized memory usage"""
    try:
        # Load dataset
        dataset = load_dataset("frankjosh/filtered_dataset")
        data = pd.DataFrame(dataset['train'])
        
        # Take a random subset
        data = data.sample(n=min(SUBSET_SIZE, len(data)), random_state=42).reset_index(drop=True)
        
        # Combine text fields
        data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
        
        # Load model and tokenizer
        model_name = "Salesforce/codet5-small"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name)
        
        if torch.cuda.is_available():
            model = model.to(device)
        
        model.eval()
        return data, tokenizer, model
    
    except Exception as e:
        st.error(f"Error in initialization: {str(e)}")
        st.stop()

def collate_fn(batch, pad_token_id):
    max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
    input_ids = []
    attention_mask = []
    
    for inputs in batch:
        input_ids.append(torch.nn.functional.pad(
            inputs['input_ids'].squeeze(),
            (0, max_length - inputs['input_ids'].shape[1]),
            value=pad_token_id
        ))
        attention_mask.append(torch.nn.functional.pad(
            inputs['attention_mask'].squeeze(),
            (0, max_length - inputs['attention_mask'].shape[1]),
            value=0
        ))
    
    return {
        'input_ids': torch.stack(input_ids),
        'attention_mask': torch.stack(attention_mask)
    }

def generate_embeddings_batch(model, batch, device):
    """Generate embeddings for a batch of inputs"""
    with torch.no_grad():
        batch = {k: v.to(device) for k, v in batch.items()}
        outputs = model.encoder(**batch)
        embeddings = outputs.last_hidden_state.mean(dim=1)
        return embeddings.cpu().numpy()

def precompute_embeddings(data: pd.DataFrame, model, tokenizer, batch_size: int = 16):
    """Precompute embeddings with batching and progress tracking"""
    dataset = TextDataset(data['text'].tolist(), tokenizer)
    dataloader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
        num_workers=2,  # Reduced workers for smaller dataset
        pin_memory=True
    )
    
    embeddings = []
    total_batches = len(dataloader)
    
    # Create a progress bar
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    start_time = datetime.now()
    
    for i, batch in enumerate(dataloader):
        # Generate embeddings for batch
        batch_embeddings = generate_embeddings_batch(model, batch, device)
        embeddings.extend(batch_embeddings)
        
        # Update progress
        progress = (i + 1) / total_batches
        progress_bar.progress(progress)
        
        # Calculate and display ETA
        elapsed_time = (datetime.now() - start_time).total_seconds()
        eta = (elapsed_time / (i + 1)) * (total_batches - (i + 1))
        status_text.text(f"Processing batch {i+1}/{total_batches}. ETA: {int(eta)} seconds")
    
    progress_bar.empty()
    status_text.empty()
    
    # Add embeddings to dataframe
    data['embedding'] = embeddings
    return data

@torch.no_grad()
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
    """Generate embedding for a single query"""
    inputs = tokenizer(
        query,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=512
    ).to(device)
    
    outputs = model.encoder(**inputs)
    embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
    return embedding.squeeze()

def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    """Find similar repositories using vectorized operations"""
    similarities = cosine_similarity([query_embedding], np.stack(data['embedding'].values))[0]
    data['similarity'] = similarities
    return data.nlargest(top_n, 'similarity')

# Load resources
data, tokenizer, model = load_data_and_model()

# Add info about subset size
st.info(f"Running with a subset of {SUBSET_SIZE} repositories for testing purposes.")

# Precompute embeddings for the subset
data = precompute_embeddings(data, model, tokenizer)


# Main App Interface
st.title("Repository Recommender System πŸš€")
st.caption("Testing Version - Running on subset of data")

# Main interface
user_query = st.text_area(
    "Describe your project:",
    height=150,
    placeholder="Example: I need a machine learning project for customer churn prediction..."
)

# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
    search_button = st.button("πŸ” Search Repositories", type="primary")
with col2:
    top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)

if search_button and user_query.strip():
    with st.spinner("Finding relevant repositories..."):
        # Generate query embedding and get recommendations
        query_embedding = generate_query_embedding(model, tokenizer, user_query)
        recommendations = find_similar_repos(query_embedding, data, top_n)

        # Save to history
        st.session_state.history.append({
            'query': user_query,
            'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            'results': recommendations['repo'].tolist()
        })

        # Display recommendations
        st.markdown("### 🎯 Top Recommendations")
        for idx, row in recommendations.iterrows():
            st.markdown(f"#### Repository {idx + 1}: {row['repo']}")
            
            # Repository details in columns
            col1, col2 = st.columns([2, 1])
            with col1:
                st.markdown(f"**URL:** [View Repository]({row['url']})")
                st.markdown(f"**Path:** `{row['path']}`")
            with col2:
                st.metric("Match Score", f"{row['similarity']:.2%}")

            # Feedback buttons in columns
            feedback_col1, feedback_col2 = st.columns([1, 4])
            with feedback_col1:
                if st.button("πŸ‘", key=f"like_{idx}"):
                    save_feedback(row['repo'], 'likes')
                    st.success("Thanks for your feedback!")
                if st.button("πŸ‘Ž", key=f"dislike_{idx}"):
                    save_feedback(row['repo'], 'dislikes')
                    st.success("Thanks for your feedback!")

            # Case Study and Documentation in tabs instead of nested expanders
            tab1, tab2 = st.tabs(["πŸ“‘ Case Study Brief", "πŸ“š Documentation"])
            
            with tab1:
                st.markdown(generate_case_study(row))
            
            with tab2:
                if row['docstring']:
                    st.markdown(row['docstring'])
                else:
                    st.info("No documentation available")

            st.markdown("---")  # Separator between repositories

# Sidebar for History and Stats
with st.sidebar:
    st.header("πŸ“Š Search History")
    if st.session_state.history:
        for idx, item in enumerate(reversed(st.session_state.history[-5:])):
            st.markdown(f"**Search {len(st.session_state.history)-idx}**")
            st.markdown(f"Query: _{item['query'][:30]}..._")
            st.caption(f"Time: {item['timestamp']}")
            st.caption(f"Results: {len(item['results'])} repositories")
            if st.button("Rerun this search", key=f"rerun_{idx}"):
                st.session_state.rerun_query = item['query']
            st.markdown("---")
    else:
        st.write("No search history yet")

    st.header("πŸ“ˆ Usage Statistics")
    st.write(f"Total Searches: {len(st.session_state.history)}")
    if st.session_state.feedback:
        feedback_df = pd.DataFrame(st.session_state.feedback).T
        feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
        st.bar_chart(feedback_df[['likes', 'dislikes']])

# Footer
st.markdown("---")
st.markdown(
    """
    Made with πŸ€– using CodeT5 and Streamlit |
    GPU Status: {'🟒 Enabled' if torch.cuda.is_available() else 'πŸ”΄ Disabled'} |
    Model: CodeT5-Small
    """
)