Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,8 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
-
"""app.
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1deINvEblsMkv9h0gJzuGB4uSamW0DMX5
|
8 |
"""
|
9 |
|
10 |
-
#pip install streamlit transformers gdown torch pandas numpy
|
11 |
-
|
12 |
import warnings
|
13 |
warnings.filterwarnings('ignore')
|
14 |
|
@@ -18,13 +12,9 @@ import numpy as np
|
|
18 |
from sklearn.metrics.pairwise import cosine_similarity
|
19 |
from transformers import AutoTokenizer, AutoModel
|
20 |
import torch
|
21 |
-
import
|
22 |
-
from pathlib import Path
|
23 |
-
from datetime import datetime
|
24 |
-
import json
|
25 |
-
import torch.cuda
|
26 |
-
import os
|
27 |
from datasets import load_dataset
|
|
|
28 |
|
29 |
# Configure GPU if available
|
30 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -35,10 +25,6 @@ if 'history' not in st.session_state:
|
|
35 |
if 'feedback' not in st.session_state:
|
36 |
st.session_state.feedback = {}
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
# Step 1: Load Dataset and Precompute Embeddings
|
43 |
@st.cache_resource
|
44 |
def load_data_and_model():
|
@@ -49,35 +35,35 @@ def load_data_and_model():
|
|
49 |
# Download and load dataset
|
50 |
dataset = load_dataset("frankjosh/filtered_dataset")
|
51 |
data = pd.DataFrame(dataset['train'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
st.error(f"Error loading dataset: {str(e)}")
|
54 |
st.stop()
|
55 |
|
56 |
# Load CodeT5-small model and tokenizer
|
57 |
model_name = "Salesforce/codet5-small"
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
-
model = AutoModel.from_pretrained(model_name)
|
70 |
-
# Move model to GPU if available
|
71 |
-
if torch.cuda.is_available():
|
72 |
-
model = model.to('cuda')
|
73 |
-
model.eval() # Set to evaluation mode
|
74 |
-
return tokenizer, model
|
75 |
-
except Exception as e:
|
76 |
-
st.error(f"Error loading model: {str(e)}")
|
77 |
-
st.stop()
|
78 |
-
|
79 |
-
tokenizer, model = load_model_and_tokenizer()
|
80 |
|
|
|
81 |
|
82 |
# Define the embedding generation function
|
83 |
@st.cache_data
|
@@ -92,31 +78,17 @@ def generate_embedding(_model, _tokenizer, text):
|
|
92 |
embedding = embedding.cpu()
|
93 |
return embedding.numpy()
|
94 |
|
95 |
-
# Error handling for generating query embeddings
|
96 |
-
try:
|
97 |
-
query_embedding = generate_embedding(model, tokenizer, user_query)
|
98 |
-
except Exception as e:
|
99 |
-
st.error(f"Error generating embedding: {str(e)}")
|
100 |
-
st.stop()
|
101 |
-
|
102 |
# Precompute embeddings for dataset
|
103 |
def precompute_embeddings(data, model, tokenizer):
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
with st.spinner('Generating embeddings... This might take a few minutes on first run...'):
|
110 |
-
data['embedding'] = data['text'].apply(lambda x: generate_cached_embedding(x))
|
111 |
return data
|
112 |
|
113 |
-
#
|
114 |
-
# data = precompute_embeddings(data, model, tokenizer)
|
115 |
-
|
116 |
def generate_case_study(repo_data):
|
117 |
-
"""
|
118 |
-
Generate a concise case study brief from repository data
|
119 |
-
"""
|
120 |
template = f"""
|
121 |
**Project Overview**: {repo_data['summary'][:50]}...
|
122 |
|
@@ -124,7 +96,7 @@ def generate_case_study(repo_data):
|
|
124 |
- Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
|
125 |
- {repo_data['docstring'][:50]}...
|
126 |
|
127 |
-
**Potential Applications**: This repository can be utilized for projects requiring {repo_data['summary'].split()[
|
128 |
|
129 |
**Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}
|
130 |
|
@@ -132,15 +104,17 @@ def generate_case_study(repo_data):
|
|
132 |
"""
|
133 |
return template[:150] + "..."
|
134 |
|
|
|
135 |
def save_feedback(repo_id, feedback_type):
|
136 |
-
"""
|
137 |
-
Save user feedback for a repository
|
138 |
-
"""
|
139 |
if repo_id not in st.session_state.feedback:
|
140 |
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
|
141 |
st.session_state.feedback[repo_id][feedback_type] += 1
|
142 |
|
143 |
-
#
|
|
|
|
|
|
|
|
|
144 |
st.title("Enhanced Repository Recommender System π")
|
145 |
|
146 |
# Sidebar for History and Stats
|
@@ -159,18 +133,9 @@ with st.sidebar:
|
|
159 |
st.header("π Usage Statistics")
|
160 |
st.write(f"Total Searches: {len(st.session_state.history)}")
|
161 |
if st.session_state.feedback:
|
162 |
-
|
163 |
-
|
164 |
-
st.
|
165 |
-
st.write(f"Total Dislikes: {total_dislikes}")
|
166 |
-
|
167 |
-
# Load resources
|
168 |
-
@st.cache_resource
|
169 |
-
def initialize_resources():
|
170 |
-
data, tokenizer, model = load_data_and_model()
|
171 |
-
return data, tokenizer, model
|
172 |
-
|
173 |
-
data, tokenizer, model = initialize_resources()
|
174 |
|
175 |
# Main interface
|
176 |
user_query = st.text_area(
|
@@ -186,7 +151,7 @@ with col1:
|
|
186 |
with col2:
|
187 |
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
|
188 |
|
189 |
-
if search_button and user_query:
|
190 |
with st.spinner("Finding relevant repositories..."):
|
191 |
# Generate query embedding and get recommendations
|
192 |
query_embedding = generate_embedding(model, tokenizer, user_query)
|
@@ -242,4 +207,4 @@ st.markdown(
|
|
242 |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
|
243 |
Model: CodeT5-Small
|
244 |
"""
|
245 |
-
)
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
Enhanced Repository Recommender System using Streamlit and CodeT5-small
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
|
|
|
|
6 |
import warnings
|
7 |
warnings.filterwarnings('ignore')
|
8 |
|
|
|
12 |
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
from transformers import AutoTokenizer, AutoModel
|
14 |
import torch
|
15 |
+
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
16 |
from datasets import load_dataset
|
17 |
+
from datetime import datetime
|
18 |
|
19 |
# Configure GPU if available
|
20 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
25 |
if 'feedback' not in st.session_state:
|
26 |
st.session_state.feedback = {}
|
27 |
|
|
|
|
|
|
|
|
|
28 |
# Step 1: Load Dataset and Precompute Embeddings
|
29 |
@st.cache_resource
|
30 |
def load_data_and_model():
|
|
|
35 |
# Download and load dataset
|
36 |
dataset = load_dataset("frankjosh/filtered_dataset")
|
37 |
data = pd.DataFrame(dataset['train'])
|
38 |
+
|
39 |
+
# Ensure required columns exist
|
40 |
+
required_columns = ['docstring', 'summary']
|
41 |
+
for col in required_columns:
|
42 |
+
if col not in data.columns:
|
43 |
+
st.error(f"Missing required column: {col}")
|
44 |
+
st.stop()
|
45 |
+
|
46 |
+
# Combine text fields for embedding generation
|
47 |
+
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
48 |
except Exception as e:
|
49 |
st.error(f"Error loading dataset: {str(e)}")
|
50 |
st.stop()
|
51 |
|
52 |
# Load CodeT5-small model and tokenizer
|
53 |
model_name = "Salesforce/codet5-small"
|
54 |
+
try:
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
+
model = AutoModel.from_pretrained(model_name)
|
57 |
|
58 |
+
# Move model to GPU if available
|
59 |
+
if torch.cuda.is_available():
|
60 |
+
model = model.to('cuda')
|
61 |
+
model.eval() # Set to evaluation mode
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Error loading model: {str(e)}")
|
64 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
return data, tokenizer, model
|
67 |
|
68 |
# Define the embedding generation function
|
69 |
@st.cache_data
|
|
|
78 |
embedding = embedding.cpu()
|
79 |
return embedding.numpy()
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Precompute embeddings for dataset
|
82 |
def precompute_embeddings(data, model, tokenizer):
|
83 |
+
embeddings = []
|
84 |
+
for text in tqdm(data['text'], desc="Generating embeddings"):
|
85 |
+
embedding = generate_embedding(model, tokenizer, text)
|
86 |
+
embeddings.append(embedding)
|
87 |
+
data['embedding'] = embeddings
|
|
|
|
|
88 |
return data
|
89 |
|
90 |
+
# Generate a concise case study brief from repository data
|
|
|
|
|
91 |
def generate_case_study(repo_data):
|
|
|
|
|
|
|
92 |
template = f"""
|
93 |
**Project Overview**: {repo_data['summary'][:50]}...
|
94 |
|
|
|
96 |
- Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
|
97 |
- {repo_data['docstring'][:50]}...
|
98 |
|
99 |
+
**Potential Applications**: This repository can be utilized for projects requiring {' '.join(repo_data['summary'].split()[:5])}...
|
100 |
|
101 |
**Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}
|
102 |
|
|
|
104 |
"""
|
105 |
return template[:150] + "..."
|
106 |
|
107 |
+
# Save user feedback for a repository
|
108 |
def save_feedback(repo_id, feedback_type):
|
|
|
|
|
|
|
109 |
if repo_id not in st.session_state.feedback:
|
110 |
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
|
111 |
st.session_state.feedback[repo_id][feedback_type] += 1
|
112 |
|
113 |
+
# Load resources
|
114 |
+
data, tokenizer, model = load_data_and_model()
|
115 |
+
data = precompute_embeddings(data, model, tokenizer)
|
116 |
+
|
117 |
+
# Main App Interface
|
118 |
st.title("Enhanced Repository Recommender System π")
|
119 |
|
120 |
# Sidebar for History and Stats
|
|
|
133 |
st.header("π Usage Statistics")
|
134 |
st.write(f"Total Searches: {len(st.session_state.history)}")
|
135 |
if st.session_state.feedback:
|
136 |
+
feedback_df = pd.DataFrame(st.session_state.feedback).T
|
137 |
+
feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
|
138 |
+
st.bar_chart(feedback_df[['likes', 'dislikes']])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
# Main interface
|
141 |
user_query = st.text_area(
|
|
|
151 |
with col2:
|
152 |
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
|
153 |
|
154 |
+
if search_button and user_query.strip():
|
155 |
with st.spinner("Finding relevant repositories..."):
|
156 |
# Generate query embedding and get recommendations
|
157 |
query_embedding = generate_embedding(model, tokenizer, user_query)
|
|
|
207 |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
|
208 |
Model: CodeT5-Small
|
209 |
"""
|
210 |
+
)
|