Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,7 @@ from pathlib import Path
|
|
23 |
from datetime import datetime
|
24 |
import json
|
25 |
import torch.cuda
|
|
|
26 |
|
27 |
# Configure GPU if available
|
28 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -33,67 +34,93 @@ if 'history' not in st.session_state:
|
|
33 |
if 'feedback' not in st.session_state:
|
34 |
st.session_state.feedback = {}
|
35 |
|
36 |
-
# Step 1: Optimized Model Loading
|
37 |
-
@st.cache_resource
|
38 |
-
def load_model_and_tokenizer():
|
39 |
-
"""
|
40 |
-
Optimized model loading with GPU support and model quantization
|
41 |
-
"""
|
42 |
-
model_name = "Salesforce/codet5-small"
|
43 |
-
|
44 |
-
# Load tokenizer
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
low_cpu_mem_usage=True
|
52 |
-
)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
@st.cache_resource
|
64 |
-
def
|
65 |
"""
|
66 |
-
Load and
|
67 |
"""
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# Step 3: Optimized Embedding Generation
|
81 |
-
@st.cache_data
|
82 |
-
def generate_embedding(_model, tokenizer, text):
|
83 |
-
"""
|
84 |
-
Generate embeddings with optimized batch processing
|
85 |
-
"""
|
86 |
-
inputs = tokenizer(
|
87 |
-
text,
|
88 |
-
return_tensors="pt",
|
89 |
-
padding=True,
|
90 |
-
truncation=True,
|
91 |
-
max_length=512
|
92 |
-
).to(device)
|
93 |
-
|
94 |
-
with torch.no_grad():
|
95 |
-
outputs = _model.encoder(**inputs)
|
96 |
-
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
97 |
|
98 |
def generate_case_study(repo_data):
|
99 |
"""
|
|
|
23 |
from datetime import datetime
|
24 |
import json
|
25 |
import torch.cuda
|
26 |
+
import os
|
27 |
|
28 |
# Configure GPU if available
|
29 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
34 |
if 'feedback' not in st.session_state:
|
35 |
st.session_state.feedback = {}
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Configuration
|
39 |
+
DATASET_GDRIVE_ID = "1pPYlUEtIA3bi8iLVKqzF-37sHoaOhTZz" # Replace with your actual file ID
|
40 |
+
LOCAL_DATA_DIR = "data"
|
41 |
+
DATASET_FILENAME = "filtered_dataset.parquet"
|
|
|
|
|
42 |
|
43 |
+
def download_from_gdrive():
|
44 |
+
"""
|
45 |
+
Download dataset from Google Drive with proper error handling
|
46 |
+
"""
|
47 |
+
os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
|
48 |
+
local_path = os.path.join(LOCAL_DATA_DIR, DATASET_FILENAME)
|
49 |
+
|
50 |
+
if not os.path.exists(local_path):
|
51 |
+
try:
|
52 |
+
with st.spinner('Downloading dataset from Google Drive... This might take a few minutes...'):
|
53 |
+
# Create direct download URL
|
54 |
+
url = f'https://drive.google.com/uc?id={DATASET_GDRIVE_ID}'
|
55 |
+
# Download file
|
56 |
+
gdown.download(url, local_path, quiet=False)
|
57 |
+
if os.path.exists(local_path):
|
58 |
+
st.success("Dataset downloaded successfully!")
|
59 |
+
else:
|
60 |
+
st.error("Failed to download dataset")
|
61 |
+
st.stop()
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Error downloading dataset: {str(e)}")
|
64 |
+
st.stop()
|
65 |
+
return local_path
|
66 |
+
|
67 |
+
# Step 1: Load Dataset and Precompute Embeddings
|
68 |
@st.cache_resource
|
69 |
+
def load_data_and_model():
|
70 |
"""
|
71 |
+
Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
|
72 |
"""
|
73 |
+
try:
|
74 |
+
# Download and load dataset
|
75 |
+
dataset_path = download_from_gdrive()
|
76 |
+
data = pd.read_parquet(dataset_path)
|
77 |
+
except Exception as e:
|
78 |
+
st.error(f"Error loading dataset: {str(e)}")
|
79 |
+
st.stop()
|
80 |
+
|
81 |
+
# Combine text fields for embedding generation
|
82 |
+
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
83 |
|
84 |
+
# Load CodeT5-small model and tokenizer
|
85 |
+
model_name = "Salesforce/codet5-small"
|
86 |
+
|
87 |
+
@st.cache_resource
|
88 |
+
def load_model_and_tokenizer():
|
89 |
+
try:
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
91 |
+
model = AutoModel.from_pretrained(model_name)
|
92 |
+
# Move model to GPU if available
|
93 |
+
if torch.cuda.is_available():
|
94 |
+
model = model.to('cuda')
|
95 |
+
model.eval() # Set to evaluation mode
|
96 |
+
return tokenizer, model
|
97 |
+
except Exception as e:
|
98 |
+
st.error(f"Error loading model: {str(e)}")
|
99 |
+
st.stop()
|
100 |
+
|
101 |
+
tokenizer, model = load_model_and_tokenizer()
|
102 |
|
103 |
+
# Precompute embeddings with GPU support
|
104 |
+
@st.cache_data
|
105 |
+
def generate_embedding(text):
|
106 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
107 |
+
# Move inputs to GPU if available
|
108 |
+
if torch.cuda.is_available():
|
109 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
110 |
+
with torch.no_grad():
|
111 |
+
outputs = model.encoder(**inputs)
|
112 |
+
# Move output back to CPU if needed
|
113 |
+
embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
|
114 |
+
if torch.cuda.is_available():
|
115 |
+
embedding = embedding.cpu()
|
116 |
+
return embedding.numpy()
|
117 |
+
|
118 |
+
# Generate embeddings with progress bar
|
119 |
+
with st.spinner('Generating embeddings... This might take a few minutes on first run...'):
|
120 |
+
data['embedding'] = data['text'].apply(lambda x: generate_embedding(x))
|
121 |
+
|
122 |
+
return data, tokenizer, model
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def generate_case_study(repo_data):
|
126 |
"""
|