Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""app.py
|
3 |
-
Enhanced Repository Recommender System using Streamlit and CodeT5-small
|
4 |
-
"""
|
5 |
-
|
6 |
import warnings
|
7 |
warnings.filterwarnings('ignore')
|
8 |
|
@@ -15,6 +10,9 @@ import torch
|
|
15 |
from tqdm import tqdm
|
16 |
from datasets import load_dataset
|
17 |
from datetime import datetime
|
|
|
|
|
|
|
18 |
|
19 |
# Configure GPU if available
|
20 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -25,94 +23,163 @@ if 'history' not in st.session_state:
|
|
25 |
if 'feedback' not in st.session_state:
|
26 |
st.session_state.feedback = {}
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@st.cache_resource
|
30 |
def load_data_and_model():
|
31 |
-
"""
|
32 |
-
Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
|
33 |
-
"""
|
34 |
try:
|
35 |
-
#
|
36 |
dataset = load_dataset("frankjosh/filtered_dataset")
|
37 |
data = pd.DataFrame(dataset['train'])
|
38 |
-
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
st.error(f"Missing required column: {col}")
|
44 |
-
st.stop()
|
45 |
-
|
46 |
-
# Combine text fields for embedding generation
|
47 |
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# Load CodeT5-small model and tokenizer
|
53 |
-
model_name = "Salesforce/codet5-small"
|
54 |
-
try:
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
model = AutoModel.from_pretrained(model_name)
|
57 |
-
|
58 |
-
# Move model to GPU if available
|
59 |
if torch.cuda.is_available():
|
60 |
-
model = model.to(
|
61 |
-
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
-
st.error(f"Error
|
64 |
st.stop()
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
def generate_embedding(_model, _tokenizer, text):
|
71 |
-
inputs = _tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
72 |
-
if torch.cuda.is_available():
|
73 |
-
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
74 |
with torch.no_grad():
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
embeddings = []
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
data['embedding'] = embeddings
|
88 |
return data
|
89 |
|
90 |
-
|
91 |
-
def
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
|
|
|
100 |
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
return template[:150] + "..."
|
106 |
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
|
111 |
-
st.session_state.feedback[repo_id][feedback_type] += 1
|
112 |
|
113 |
-
#
|
114 |
-
data, tokenizer, model = load_data_and_model()
|
115 |
-
data = precompute_embeddings(data, model, tokenizer)
|
116 |
|
117 |
# Main App Interface
|
118 |
st.title("Enhanced Repository Recommender System 🚀")
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import warnings
|
2 |
warnings.filterwarnings('ignore')
|
3 |
|
|
|
10 |
from tqdm import tqdm
|
11 |
from datasets import load_dataset
|
12 |
from datetime import datetime
|
13 |
+
from typing import List, Dict, Any
|
14 |
+
from torch.utils.data import DataLoader, Dataset
|
15 |
+
from functools import partial
|
16 |
|
17 |
# Configure GPU if available
|
18 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
23 |
if 'feedback' not in st.session_state:
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
+
# Define subset size
|
27 |
+
SUBSET_SIZE = 1000 # Starting with 1000 items for quick testing
|
28 |
+
|
29 |
+
class TextDataset(Dataset):
|
30 |
+
def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
|
31 |
+
self.texts = texts
|
32 |
+
self.tokenizer = tokenizer
|
33 |
+
self.max_length = max_length
|
34 |
+
|
35 |
+
def __len__(self):
|
36 |
+
return len(self.texts)
|
37 |
+
|
38 |
+
def __getitem__(self, idx):
|
39 |
+
return self.tokenizer(
|
40 |
+
self.texts[idx],
|
41 |
+
padding='max_length',
|
42 |
+
truncation=True,
|
43 |
+
max_length=self.max_length,
|
44 |
+
return_tensors="pt"
|
45 |
+
)
|
46 |
+
|
47 |
@st.cache_resource
|
48 |
def load_data_and_model():
|
49 |
+
"""Load the dataset and model with optimized memory usage"""
|
|
|
|
|
50 |
try:
|
51 |
+
# Load dataset
|
52 |
dataset = load_dataset("frankjosh/filtered_dataset")
|
53 |
data = pd.DataFrame(dataset['train'])
|
54 |
+
|
55 |
+
# Take a random subset
|
56 |
+
data = data.sample(n=min(SUBSET_SIZE, len(data)), random_state=42).reset_index(drop=True)
|
57 |
+
|
58 |
+
# Combine text fields
|
|
|
|
|
|
|
|
|
59 |
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
60 |
+
|
61 |
+
# Load model and tokenizer
|
62 |
+
model_name = "Salesforce/codet5-small"
|
|
|
|
|
|
|
|
|
63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
model = AutoModel.from_pretrained(model_name)
|
65 |
+
|
|
|
66 |
if torch.cuda.is_available():
|
67 |
+
model = model.to(device)
|
68 |
+
|
69 |
+
model.eval()
|
70 |
+
return data, tokenizer, model
|
71 |
+
|
72 |
except Exception as e:
|
73 |
+
st.error(f"Error in initialization: {str(e)}")
|
74 |
st.stop()
|
75 |
|
76 |
+
def collate_fn(batch, pad_token_id):
|
77 |
+
max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
|
78 |
+
input_ids = []
|
79 |
+
attention_mask = []
|
80 |
+
|
81 |
+
for inputs in batch:
|
82 |
+
input_ids.append(torch.nn.functional.pad(
|
83 |
+
inputs['input_ids'].squeeze(),
|
84 |
+
(0, max_length - inputs['input_ids'].shape[1]),
|
85 |
+
value=pad_token_id
|
86 |
+
))
|
87 |
+
attention_mask.append(torch.nn.functional.pad(
|
88 |
+
inputs['attention_mask'].squeeze(),
|
89 |
+
(0, max_length - inputs['attention_mask'].shape[1]),
|
90 |
+
value=0
|
91 |
+
))
|
92 |
+
|
93 |
+
return {
|
94 |
+
'input_ids': torch.stack(input_ids),
|
95 |
+
'attention_mask': torch.stack(attention_mask)
|
96 |
+
}
|
97 |
|
98 |
+
def generate_embeddings_batch(model, batch, device):
|
99 |
+
"""Generate embeddings for a batch of inputs"""
|
|
|
|
|
|
|
|
|
100 |
with torch.no_grad():
|
101 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
102 |
+
outputs = model.encoder(**batch)
|
103 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
104 |
+
return embeddings.cpu().numpy()
|
105 |
+
|
106 |
+
def precompute_embeddings(data: pd.DataFrame, model, tokenizer, batch_size: int = 16):
|
107 |
+
"""Precompute embeddings with batching and progress tracking"""
|
108 |
+
dataset = TextDataset(data['text'].tolist(), tokenizer)
|
109 |
+
dataloader = DataLoader(
|
110 |
+
dataset,
|
111 |
+
batch_size=batch_size,
|
112 |
+
shuffle=False,
|
113 |
+
collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
|
114 |
+
num_workers=2, # Reduced workers for smaller dataset
|
115 |
+
pin_memory=True
|
116 |
+
)
|
117 |
+
|
118 |
embeddings = []
|
119 |
+
total_batches = len(dataloader)
|
120 |
+
|
121 |
+
# Create a progress bar
|
122 |
+
progress_bar = st.progress(0)
|
123 |
+
status_text = st.empty()
|
124 |
+
|
125 |
+
start_time = datetime.now()
|
126 |
+
|
127 |
+
for i, batch in enumerate(dataloader):
|
128 |
+
# Generate embeddings for batch
|
129 |
+
batch_embeddings = generate_embeddings_batch(model, batch, device)
|
130 |
+
embeddings.extend(batch_embeddings)
|
131 |
+
|
132 |
+
# Update progress
|
133 |
+
progress = (i + 1) / total_batches
|
134 |
+
progress_bar.progress(progress)
|
135 |
+
|
136 |
+
# Calculate and display ETA
|
137 |
+
elapsed_time = (datetime.now() - start_time).total_seconds()
|
138 |
+
eta = (elapsed_time / (i + 1)) * (total_batches - (i + 1))
|
139 |
+
status_text.text(f"Processing batch {i+1}/{total_batches}. ETA: {int(eta)} seconds")
|
140 |
+
|
141 |
+
progress_bar.empty()
|
142 |
+
status_text.empty()
|
143 |
+
|
144 |
+
# Add embeddings to dataframe
|
145 |
data['embedding'] = embeddings
|
146 |
return data
|
147 |
|
148 |
+
@torch.no_grad()
|
149 |
+
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
|
150 |
+
"""Generate embedding for a single query"""
|
151 |
+
inputs = tokenizer(
|
152 |
+
query,
|
153 |
+
return_tensors="pt",
|
154 |
+
padding=True,
|
155 |
+
truncation=True,
|
156 |
+
max_length=512
|
157 |
+
).to(device)
|
158 |
+
|
159 |
+
outputs = model.encoder(**inputs)
|
160 |
+
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
161 |
+
return embedding.squeeze()
|
162 |
|
163 |
+
def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
|
164 |
+
"""Find similar repositories using vectorized operations"""
|
165 |
+
similarities = cosine_similarity([query_embedding], np.stack(data['embedding'].values))[0]
|
166 |
+
data['similarity'] = similarities
|
167 |
+
return data.nlargest(top_n, 'similarity')
|
168 |
|
169 |
+
# Load resources
|
170 |
+
data, tokenizer, model = load_data_and_model()
|
171 |
|
172 |
+
# Add info about subset size
|
173 |
+
st.info(f"Running with a subset of {SUBSET_SIZE} repositories for testing purposes.")
|
174 |
|
175 |
+
# Precompute embeddings for the subset
|
176 |
+
data = precompute_embeddings(data, model, tokenizer)
|
|
|
177 |
|
178 |
+
# Main App Interface
|
179 |
+
st.title("Repository Recommender System 🚀")
|
180 |
+
st.caption("Testing Version - Running on subset of data")
|
|
|
|
|
181 |
|
182 |
+
# Rest of your UI code remains the same...
|
|
|
|
|
183 |
|
184 |
# Main App Interface
|
185 |
st.title("Enhanced Repository Recommender System 🚀")
|