File size: 6,276 Bytes
c26ed9b
 
 
 
 
 
 
 
 
5c717fb
1c4d662
a2df113
c60740f
 
c26ed9b
 
 
 
 
 
 
5c717fb
c26ed9b
 
 
1c4d662
 
 
c60740f
5c717fb
 
 
877a41e
5c717fb
 
 
 
 
 
 
 
877a41e
c26ed9b
5c717fb
 
 
73463ed
5c717fb
 
 
73463ed
 
5c717fb
73463ed
 
 
5c717fb
c60740f
73463ed
5c717fb
62db363
5c717fb
 
62db363
5c717fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c60740f
1c4d662
c60740f
5c717fb
1c4d662
c60740f
5c717fb
a2df113
5c717fb
62db363
c60740f
5c717fb
a2df113
5e9f512
7160c8d
c60740f
 
5c717fb
 
 
c60740f
5c717fb
 
c60740f
 
5c717fb
c60740f
5c717fb
 
 
 
c60740f
 
 
c26ed9b
5c717fb
 
 
 
 
 
 
 
 
c26ed9b
5c717fb
37a13eb
5c717fb
c26ed9b
5c717fb
 
 
 
 
 
c26ed9b
5c717fb
 
c26ed9b
 
5c717fb
 
 
 
 
 
b8a76c3
5c717fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import warnings
warnings.filterwarnings('ignore')

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset  # For loading dataset
from datetime import datetime
from typing import List, Dict, Any
from functools import partial

# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Initialize session state
if 'history' not in st.session_state:
    st.session_state.history = []

if 'feedback' not in st.session_state:
    st.session_state.feedback = {}

# Define subset size and batch size for optimization
SUBSET_SIZE = 500  # Smaller subset for faster precomputation
BATCH_SIZE = 8  # Smaller batch size to reduce memory overhead

# Caching key resources: Model, Tokenizer, and Precomputed Embeddings
@st.cache_resource
def load_model_and_tokenizer():
    """
    Load the pre-trained model and tokenizer using Hugging Face Transformers.
    Cached to ensure it loads only once.
    """
    model_name = "Salesforce/codet5-small"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name).to(device)
    model.eval()
    return tokenizer, model

@st.cache_resource
def load_data():
    """
    Load and sample the dataset from Hugging Face.
    Ensures the 'text' column is created for embedding precomputation.
    """
    dataset = load_dataset("frankjosh/filtered_dataset")
    data = pd.DataFrame(dataset['train'])
    
    # Take a random subset of data
    data = data.sample(n=min(SUBSET_SIZE, len(data)), random_state=42).reset_index(drop=True)
    
    # Create a 'text' column by combining relevant fields
    data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
    return data


@st.cache_resource
def precompute_embeddings(data: pd.DataFrame, _tokenizer, _model, batch_size=BATCH_SIZE):
    """
    Precompute embeddings for repository metadata to optimize query performance.
    The tokenizer and model are excluded from caching as they are unhashable.
    """
    class TextDataset(Dataset):
        def __init__(self, texts: List[str], tokenizer, max_length=512):
            self.texts = texts
            self.tokenizer = tokenizer
            self.max_length = max_length

        def __len__(self):
            return len(self.texts)

        def __getitem__(self, idx):
            return self.tokenizer(
                self.texts[idx],
                padding='max_length',
                truncation=True,
                max_length=self.max_length,
                return_tensors="pt"
            )

    def collate_fn(batch, pad_token_id):
        max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
        input_ids, attention_mask = [], []
        for inputs in batch:
            input_ids.append(torch.nn.functional.pad(
                inputs['input_ids'].squeeze(),
                (0, max_length - inputs['input_ids'].shape[1]),
                value=pad_token_id
            ))
            attention_mask.append(torch.nn.functional.pad(
                inputs['attention_mask'].squeeze(),
                (0, max_length - inputs['attention_mask'].shape[1]),
                value=0
            ))
        return {
            'input_ids': torch.stack(input_ids),
            'attention_mask': torch.stack(attention_mask)
        }

    def generate_embeddings_batch(model, batch, device):
        with torch.no_grad():
            batch = {k: v.to(device) for k, v in batch.items()}
            outputs = model.encoder(**batch)
            return outputs.last_hidden_state.mean(dim=1).cpu().numpy()

    dataset = TextDataset(data['text'].tolist(), _tokenizer)
    dataloader = DataLoader(
        dataset, batch_size=batch_size, shuffle=False,
        collate_fn=partial(collate_fn, pad_token_id=_tokenizer.pad_token_id)
    )

    embeddings = []
    for batch in dataloader:
        batch_embeddings = generate_embeddings_batch(_model, batch, device)
        embeddings.extend(batch_embeddings)

    data['embedding'] = embeddings
    return data

@torch.no_grad()
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
    """
    Generate embedding for a user query using the pre-trained model.
    """
    inputs = tokenizer(
        query, return_tensors="pt", padding=True,
        truncation=True, max_length=512
    ).to(device)
    outputs = model.encoder(**inputs)
    return outputs.last_hidden_state.mean(dim=1).cpu().numpy()

def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n=5) -> pd.DataFrame:
    """
    Compute cosine similarity and return the top N most similar repositories.
    """
    similarities = cosine_similarity([query_embedding], np.stack(data['embedding'].values))[0]
    data['similarity'] = similarities
    return data.nlargest(top_n, 'similarity')

def display_recommendations(recommendations: pd.DataFrame):
    """
    Display the recommended repositories in the Streamlit app interface.
    """
    st.markdown("### 🎯 Top Recommendations")
    for idx, row in recommendations.iterrows():
        st.markdown(f"### {idx + 1}. {row['repo']}")
        st.metric("Match Score", f"{row['similarity']:.2%}")
        st.markdown(f"[View Repository]({row['url']})")

# Main workflow
st.title("Repository Recommender System πŸš€")
st.caption("Find repositories based on your project description.")

# Load resources
tokenizer, model = load_model_and_tokenizer()
data = load_data()
data = precompute_embeddings(data, tokenizer, model)

# User input
user_query = st.text_area(
    "Describe your project:", height=150,
    placeholder="Example: A machine learning project for customer churn prediction..."
)

if st.button("πŸ” Search Repositories"):
    if user_query.strip():
        with st.spinner("Finding relevant repositories..."):
            query_embedding = generate_query_embedding(model, tokenizer, user_query)
            recommendations = find_similar_repos(query_embedding, data)
            display_recommendations(recommendations)
    else:
        st.error("Please provide a project description.")