Spaces:
Paused
Paused
File size: 79,742 Bytes
2221f84 939c5b6 986787e 939c5b6 c8f1081 2221f84 3fa8d86 2221f84 939c5b6 2221f84 939c5b6 9b5f7bf 3fa8d86 869cf1f 9b5f7bf 2f85060 939c5b6 75eaefb 939c5b6 c8f1081 a140def 939c5b6 a140def 939c5b6 a140def 52b0001 9a7ba63 a140def 52b0001 9a7ba63 2221f84 52b0001 9a7ba63 c8f1081 1e557c0 c8f1081 1e557c0 c8f1081 a167bcb c8f1081 86bd1dc c8f1081 86bd1dc c8f1081 2221f84 c8f1081 2221f84 c8f1081 a167bcb c8f1081 52b0001 c8f1081 2120faf c8f1081 75eaefb f74df83 24cf3e5 612163b f74df83 2120faf 2221f84 f74df83 2221f84 f74df83 2221f84 c8f1081 c7cfbcf c8f1081 c7cfbcf 2120faf c8f1081 f74df83 2120faf f74df83 52b0001 caa0993 9a94403 2221f84 f74df83 c8f1081 e668d96 a140def c8f1081 3bc821d a140def e668d96 3bc821d e668d96 3bc821d e668d96 3bc821d a140def 3bc821d e668d96 a140def e668d96 a140def e668d96 3bc821d e668d96 6ef7b9a 52b0001 9a7ba63 52b0001 22a9756 8c7f07f 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a90b7a 52b0001 800db56 52b0001 9a7ba63 6ef7b9a 0efc8aa 6ef7b9a f91edb7 6ef7b9a 977e15f 986787e 977e15f 986787e c2184af 986787e 6ef7b9a 986787e a1ccce8 52b0001 9a7ba63 c85f33f 977e15f 52b0001 17d9bed 9a7ba63 52b0001 a140def 52b0001 a140def 52b0001 a140def 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 caa0993 52b0001 9a7ba63 52b0001 f8395c3 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a7ba63 c8f1081 c687706 c8f1081 a140def c8f1081 c82efd7 c8f1081 709dafc c8f1081 d9dad18 4acbdde c8f1081 4acbdde 17d9bed 4acbdde 17d9bed c8f1081 4acbdde 2221f84 a167bcb 4acbdde 129c611 75eaefb 17d9bed 2221f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 |
# #Main code header Library
# import gradio as gr
# import requests
# import os
# import time
# import re
# import logging
# import tempfile
# import folium
# import concurrent.futures
# import torch
# from PIL import Image
# from datetime import datetime
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# from googlemaps import Client as GoogleMapsClient
# from gtts import gTTS
# from diffusers import StableDiffusionPipeline
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
# from langchain_pinecone import PineconeVectorStore
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.chains.conversation.memory import ConversationBufferWindowMemory
# from huggingface_hub import login
# from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
# from parler_tts import ParlerTTSForConditionalGeneration
# from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
# from scipy.io.wavfile import write as write_wav
# from pydub import AudioSegment
# from string import punctuation
# import librosa
# from pathlib import Path
# import torchaudio
# import numpy as np
# # Neo4j imports
# from langchain.chains import GraphCypherQAChain
# from langchain_community.graphs import Neo4jGraph
# from langchain_community.document_loaders import HuggingFaceDatasetLoader
# from langchain_text_splitters import CharacterTextSplitter
# from langchain_experimental.graph_transformers import LLMGraphTransformer
# from langchain_core.prompts import ChatPromptTemplate
# from langchain_core.pydantic_v1 import BaseModel, Field
# from langchain_core.messages import AIMessage, HumanMessage
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
# # Set environment variables for Torch- CUDA
# os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# #Hugging face token Initilization
# hf_token = os.getenv("HF_TOKEN")
# if hf_token is None:
# print("Please set your Hugging Face token in the environment variables.")
# else:
# login(token=hf_token)
# logging.basicConfig(level=logging.DEBUG)
# #Embedding the vector with openai
# embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# # Pinecone setup
# from pinecone import Pinecone
# pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
# index_name = "radardata07242024"
# vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
# retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
# chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
# conversational_memory = ConversationBufferWindowMemory(
# memory_key='chat_history',
# k=10,
# return_messages=True
# )
# # Prompt templates
# def get_current_date():
# return datetime.now().strftime("%B %d, %Y")
# current_date = get_current_date()
# template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
# If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
# Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
# It was my pleasure!
# {{context}}
# Question: {{question}}
# Helpful Answer:"""
# template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""
# #QA_Chain_templates
# QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
# QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# # Neo4j setup
# graph = Neo4jGraph(
# url="neo4j+s://98f45cc0.databases.neo4j.io",
# username="neo4j",
# password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
# )
# # Avoid pushing the graph documents to Neo4j every time
# # Only push the documents once and comment the code below after the initial push
# # dataset_name = "Pijush2023/birmindata07312024"
# # page_content_column = 'events_description'
# # loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# # data = loader.load()
# # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# # documents = text_splitter.split_documents(data)
# # llm_transformer = LLMGraphTransformer(llm=chat_model)
# # graph_documents = llm_transformer.convert_to_graph_documents(documents)
# # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
# #Neo4j Setup
# class Entities(BaseModel):
# names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
# entity_prompt = ChatPromptTemplate.from_messages([
# ("system", "You are extracting organization and person entities from the text."),
# ("human", "Use the given format to extract information from the following input: {question}"),
# ])
# entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
# #Remove Lucene Characther
# def remove_lucene_chars(input: str) -> str:
# return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
# "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
# "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
# ";": r"\;", " ": r"\ "}))
# #Full Text query Generator
# def generate_full_text_query(input: str) -> str:
# full_text_query = ""
# words = [el for el in remove_lucene_chars(input).split() if el]
# for word in words[:-1]:
# full_text_query += f" {word}~2 AND"
# full_text_query += f" {words[-1]}~2"
# return full_text_query.strip()
# # Neo4j Retrieval connection
# def structured_retriever(question: str) -> str:
# result = ""
# entities = entity_chain.invoke({"question": question})
# for entity in entities.names:
# response = graph.query(
# """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
# YIELD node,score
# CALL {
# WITH node
# MATCH (node)-[r:!MENTIONS]->(neighbor)
# RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
# UNION ALL
# WITH node
# MATCH (node)<-[r:!MENTIONS]-(neighbor)
# RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
# }
# RETURN output LIMIT 50
# """,
# {"query": generate_full_text_query(entity)},
# )
# result += "\n".join([el['output'] for el in response])
# return result
# def retriever_neo4j(question: str):
# structured_data = structured_retriever(question)
# logging.debug(f"Structured data: {structured_data}")
# return structured_data
# _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
# in its original language.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
# def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
# buffer = []
# for human, ai in chat_history:
# buffer.append(HumanMessage(content=human))
# buffer.append(AIMessage(content=ai))
# return buffer
# _search_query = RunnableBranch(
# (
# RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
# run_name="HasChatHistoryCheck"
# ),
# RunnablePassthrough.assign(
# chat_history=lambda x: _format_chat_history(x["chat_history"])
# )
# | CONDENSE_QUESTION_PROMPT
# | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
# | StrOutputParser(),
# ),
# RunnableLambda(lambda x : x["question"]),
# )
# # # template = """Answer the question based only on the following context:
# # {context}
# # Question: {question}
# # Use natural language and be concise.
# # Answer:"""
# # Define conversational and detailed prompt templates for Neo4j responses
# neo4j_conversational_template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
# In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
# "It was my pleasure!"
# {{context}}
# Question: {{question}}
# Helpful Answer:"""
# neo4j_details_template = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
# If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
# Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# Address: >>, Birmingham, AL
# Time: >>__
# Date: >>__
# Description: >>__
# If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
# It was my pleasure!
# {{context}}
# Question: {{question}}
# Helpful Answer:"""
# # Create prompt templates
# QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL = PromptTemplate(input_variables=["context", "question"], template=neo4j_conversational_template)
# QA_CHAIN_PROMPT_NEO4J_DETAILS = PromptTemplate(input_variables=["context", "question"], template=neo4j_details_template)
# # Define Neo4j retrieval chain for conversational mode
# def neo4j_retrieval_conversational(question: str):
# structured_data = structured_retriever(question)
# logging.debug(f"Structured data (Conversational): {structured_data}")
# prompt = QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL.format(context=structured_data, question=question)
# response = chat_model({"query": prompt})
# return response, []
# # Define Neo4j retrieval chain for detailed mode
# def neo4j_retrieval_details(question: str):
# structured_data = structured_retriever(question)
# logging.debug(f"Structured data (Details): {structured_data}")
# prompt = QA_CHAIN_PROMPT_NEO4J_DETAILS.format(context=structured_data, question=question)
# response = chat_model({"query": prompt})
# return response, extract_addresses(response)
# # qa_prompt = ChatPromptTemplate.from_template(template)
# chain_neo4j = (
# RunnableParallel(
# {
# "context": _search_query | retriever_neo4j,
# "question": RunnablePassthrough(),
# }
# )
# | qa_prompt
# | chat_model
# | StrOutputParser()
# )
# # Define a function to select between Pinecone and Neo4j
# # def generate_answer(message, choice, retrieval_mode):
# # logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
# # prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
# # if retrieval_mode == "Vector":
# # qa_chain = RetrievalQA.from_chain_type(
# # llm=chat_model,
# # chain_type="stuff",
# # retriever=retriever,
# # chain_type_kwargs={"prompt": prompt_template}
# # )
# # response = qa_chain({"query": message})
# # logging.debug(f"Vector response: {response}")
# # return response['result'], extract_addresses(response['result'])
# # elif retrieval_mode == "Knowledge-Graph":
# # response = chain_neo4j.invoke({"question": message})
# # logging.debug(f"Knowledge-Graph response: {response}")
# # return response, extract_addresses(response)
# # else:
# # return "Invalid retrieval mode selected.", []
# def generate_answer(message, choice, retrieval_mode):
# logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
# prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
# if retrieval_mode == "Vector":
# qa_chain = RetrievalQA.from_chain_type(
# llm=chat_model,
# chain_type="stuff",
# retriever=retriever,
# chain_type_kwargs={"prompt": prompt_template}
# )
# response = qa_chain({"query": message})
# logging.debug(f"Vector response: {response}")
# return response['result'], extract_addresses(response['result'])
# elif retrieval_mode == "Knowledge-Graph":
# if choice == "Details":
# response, addresses = neo4j_retrieval_details(message)
# else:
# response, addresses = neo4j_retrieval_conversational(message)
# logging.debug(f"Knowledge-Graph response: {response}")
# return response, addresses
# else:
# return "Invalid retrieval mode selected.", []
# def bot(history, choice, tts_choice, retrieval_mode):
# if not history:
# return history
# response, addresses = generate_answer(history[-1][0], choice, retrieval_mode)
# history[-1][1] = ""
# with concurrent.futures.ThreadPoolExecutor() as executor:
# if tts_choice == "Alpha":
# audio_future = executor.submit(generate_audio_elevenlabs, response)
# elif tts_choice == "Beta":
# audio_future = executor.submit(generate_audio_parler_tts, response)
# elif tts_choice == "Gamma":
# audio_future = executor.submit(generate_audio_mars5, response)
# for character in response:
# history[-1][1] += character
# time.sleep(0.05)
# yield history, None
# audio_path = audio_future.result()
# yield history, audio_path
# history.append([response, None]) # Ensure the response is added in the correct format
# def add_message(history, message):
# history.append((message, None))
# return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
# def print_like_dislike(x: gr.LikeData):
# print(x.index, x.value, x.liked)
# def extract_addresses(response):
# if not isinstance(response, str):
# response = str(response)
# address_patterns = [
# r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
# r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
# r'([A-Z].*,\sAL\s\d{5})',
# r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
# r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
# r'(\d{2}.*\sStreets)',
# r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
# r'([a-zA-Z]\s Birmingham)',
# r'([a-zA-Z].*,\sBirmingham,\sAL)',
# r'(^Birmingham,AL$)'
# ]
# addresses = []
# for pattern in address_patterns:
# addresses.extend(re.findall(pattern, response))
# return addresses
# all_addresses = []
# def generate_map(location_names):
# global all_addresses
# all_addresses.extend(location_names)
# api_key = os.environ['GOOGLEMAPS_API_KEY']
# gmaps = GoogleMapsClient(key=api_key)
# m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
# for location_name in all_addresses:
# geocode_result = gmaps.geocode(location_name)
# if geocode_result:
# location = geocode_result[0]['geometry']['location']
# folium.Marker(
# [location['lat'], location['lng']],
# tooltip=f"{geocode_result[0]['formatted_address']}"
# ).add_to(m)
# map_html = m._repr_html_()
# return map_html
# def fetch_local_news():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# results = response.json().get("news_results", [])
# news_html = """
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
# <style>
# .news-item {
# font-family: 'Verdana', sans-serif;
# color: #333;
# background-color: #f0f8ff;
# margin-bottom: 15px;
# padding: 10px;
# border-radius: 5px;
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# font-weight: bold;
# }
# .news-item:hover {
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# background-color: #e6f7ff;
# }
# .news-item a {
# color: #1E90FF;
# text-decoration: none;
# font-weight: bold;
# }
# .news-item a:hover {
# text-decoration: underline;
# }
# .news-preview {
# position: absolute;
# display: none;
# border: 1px solid #ccc;
# border-radius: 5px;
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# background-color: white;
# z-index: 1000;
# max-width: 300px;
# padding: 10px;
# font-family: 'Verdana', sans-serif;
# color: #333;
# }
# </style>
# <script>
# function showPreview(event, previewContent) {
# var previewBox = document.getElementById('news-preview');
# previewBox.innerHTML = previewContent;
# previewBox.style.left = event.pageX + 'px';
# previewBox.style.top = event.pageY + 'px';
# previewBox.style.display = 'block';
# }
# function hidePreview() {
# var previewBox = document.getElementById('news-preview');
# previewBox.style.display = 'none';
# }
# </script>
# <div id="news-preview" class="news-preview"></div>
# """
# for index, result in enumerate(results[:7]):
# title = result.get("title", "No title")
# link = result.get("link", "#")
# snippet = result.get("snippet", "")
# news_html += f"""
# <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
# <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# <p>{snippet}</p>
# </div>
# """
# return news_html
# else:
# return "<p>Failed to fetch local news</p>"
# import numpy as np
# import torch
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# model_id = 'openai/whisper-large-v3'
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
# processor = AutoProcessor.from_pretrained(model_id)
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
# base_audio_drive = "/data/audio"
# def transcribe_function(stream, new_chunk):
# try:
# sr, y = new_chunk[0], new_chunk[1]
# except TypeError:
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
# return stream, "", None
# y = y.astype(np.float32) / np.max(np.abs(y))
# if stream is not None:
# stream = np.concatenate([stream, y])
# else:
# stream = y
# result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
# full_text = result.get("text","")
# return stream, full_text, result
# def update_map_with_response(history):
# if not history:
# return ""
# response = history[-1][1]
# addresses = extract_addresses(response)
# return generate_map(addresses)
# def clear_textbox():
# return ""
# def show_map_if_details(history, choice):
# if choice in ["Details", "Conversational"]:
# return gr.update(visible=True), update_map_with_response(history)
# else:
# return gr.update(visible=False), ""
# def generate_audio_elevenlabs(text):
# XI_API_KEY = os.environ['ELEVENLABS_API']
# VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
# tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
# headers = {
# "Accept": "application/json",
# "xi-api-key": XI_API_KEY
# }
# data = {
# "text": str(text),
# "model_id": "eleven_multilingual_v2",
# "voice_settings": {
# "stability": 1.0,
# "similarity_boost": 0.0,
# "style": 0.60,
# "use_speaker_boost": False
# }
# }
# response = requests.post(tts_url, headers=headers, json=data, stream=True)
# if response.ok:
# audio_segments = []
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
# for chunk in response.iter_content(chunk_size=1024):
# if chunk:
# f.write(chunk)
# audio_segments.append(chunk)
# temp_audio_path = f.name
# # Combine all audio chunks into a single file
# combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
# combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
# combined_audio.export(combined_audio_path, format="mp3")
# logging.debug(f"Audio saved to {combined_audio_path}")
# return combined_audio_path
# else:
# logging.error(f"Error generating audio: {response.text}")
# return None
# repo_id = "parler-tts/parler-tts-mini-expresso"
# parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
# parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
# parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
# SAMPLE_RATE = parler_feature_extractor.sampling_rate
# SEED = 42
# def preprocess(text):
# number_normalizer = EnglishNumberNormalizer()
# text = number_normalizer(text).strip()
# if text[-1] not in punctuation:
# text = f"{text}."
# abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
# def separate_abb(chunk):
# chunk = chunk.replace(".", "")
# return " ".join(chunk)
# abbreviations = re.findall(abbreviations_pattern, text)
# for abv in abbreviations:
# if abv in text:
# text is text.replace(abv, separate_abb(abv))
# return text
# def chunk_text(text, max_length=250):
# words = text.split()
# chunks = []
# current_chunk = []
# current_length = 0
# for word in words:
# if current_length + len(word) + 1 <= max_length:
# current_chunk.append(word)
# current_length += len(word) + 1
# else:
# chunks.append(' '.join(current_chunk))
# current_chunk = [word]
# current_length = len(word) + 1
# if current_chunk:
# chunks.append(' '.join(current_chunk))
# return chunks
# def generate_audio_parler_tts(text):
# description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
# chunks = chunk_text(preprocess(text))
# audio_segments = []
# for chunk in chunks:
# inputs = parler_tokenizer(description, return_tensors="pt").to(device)
# prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
# set_seed(SEED)
# generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
# audio_arr = generation.cpu().numpy().squeeze()
# temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
# write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
# audio_segments.append(AudioSegment.from_wav(temp_audio_path))
# combined_audio = sum(audio_segments)
# combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
# combined_audio.export(combined_audio_path, format="wav")
# logging.debug(f"Audio saved to {combined_audio_path}")
# return combined_audio_path
# # Load the MARS5 model
# mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
# def generate_audio_mars5(text):
# description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
# kwargs_dict = {
# 'temperature': 0.2,
# 'top_k': -1,
# 'top_p': 0.2,
# 'typical_p': 1.0,
# 'freq_penalty': 2.6,
# 'presence_penalty': 0.4,
# 'rep_penalty_window': 100,
# 'max_prompt_phones': 360,
# 'deep_clone': True,
# 'nar_guidance_w': 3
# }
# chunks = chunk_text(preprocess(text))
# audio_segments = []
# for chunk in chunks:
# wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
# cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
# ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
# temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
# torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
# audio_segments.append(AudioSegment.from_wav(temp_audio_path))
# combined_audio = sum(audio_segments)
# combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
# combined_audio.export(combined_audio_path, format="wav")
# logging.debug(f"Audio saved to {combined_audio_path}")
# return combined_audio_path
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
# pipe.to(device)
# def generate_image(prompt):
# with torch.cuda.amp.autocast():
# image = pipe(
# prompt,
# num_inference_steps=28,
# guidance_scale=3.0,
# ).images[0]
# return image
# hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
# hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
# hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
# def update_images():
# image_1 = generate_image(hardcoded_prompt_1)
# image_2 = generate_image(hardcoded_prompt_2)
# image_3 = generate_image(hardcoded_prompt_3)
# return image_1, image_2, image_3
# def fetch_local_events():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# events_results = response.json().get("events_results", [])
# events_html = """
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
# <style>
# table {
# font-family: 'Verdana', sans-serif;
# color: #333;
# border-collapse: collapse;
# width: 100%;
# }
# th, td {
# border: 1px solid #fff !important;
# padding: 8px;
# }
# th {
# background-color: #f2f2f2;
# color: #333;
# text-align: left;
# }
# tr:hover {
# background-color: #f5f5f5;
# }
# .event-link {
# color: #1E90FF;
# text-decoration: none;
# }
# .event-link:hover {
# text-decoration: underline;
# }
# </style>
# <table>
# <tr>
# <th>Title</th>
# <th>Date and Time</th>
# <th>Location</th>
# </tr>
# """
# for event in events_results:
# title = event.get("title", "No title")
# date_info = event.get("date", {})
# date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
# location = event.get("address", "No location")
# if isinstance(location, list):
# location = " ".join(location)
# location = location.replace("[", "").replace("]", "")
# link = event.get("link", "#")
# events_html += f"""
# <tr>
# <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
# <td>{date}</td>
# <td>{location}</td>
# </tr>
# """
# events_html += "</table>"
# return events_html
# else:
# return "<p>Failed to fetch local events</p>"
# def get_weather_icon(condition):
# condition_map = {
# "Clear": "c01d",
# "Partly Cloudy": "c02d",
# "Cloudy": "c03d",
# "Overcast": "c04d",
# "Mist": "a01d",
# "Patchy rain possible": "r01d",
# "Light rain": "r02d",
# "Moderate rain": "r03d",
# "Heavy rain": "r04d",
# "Snow": "s01d",
# "Thunderstorm": "t01d",
# "Fog": "a05d",
# }
# return condition_map.get(condition, "c04d")
# def fetch_local_weather():
# try:
# api_key = os.environ['WEATHER_API']
# url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
# response = requests.get(url)
# response.raise_for_status()
# jsonData = response.json()
# current_conditions = jsonData.get("currentConditions", {})
# temp_celsius = current_conditions.get("temp", "N/A")
# if temp_celsius != "N/A":
# temp_fahrenheit = int((temp_celsius * 9/5) + 32)
# else:
# temp_fahrenheit = "N/A"
# condition = current_conditions.get("conditions", "N/A")
# humidity = current_conditions.get("humidity", "N/A")
# weather_html = f"""
# <div class="weather-theme">
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
# <div class="weather-content">
# <div class="weather-icon">
# <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
# </div>
# <div class="weather-details">
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
# </div>
# </div>
# </div>
# <style>
# .weather-theme {{
# animation: backgroundAnimation 10s infinite alternate;
# border-radius: 10px;
# padding: 10px;
# margin-bottom: 15px;
# background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
# background-size: 400% 400%;
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# }}
# .weather-theme:hover {{
# box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
# background-position: 100% 100%;
# }}
# @keyframes backgroundAnimation {{
# 0% {{ background-position: 0% 50%; }}
# 100% {{ background-position: 100% 50%; }}
# }}
# .weather-content {{
# display: flex;
# align-items: center;
# }}
# .weather-icon {{
# flex: 1;
# }}
# .weather-details {{
# flex 3;
# }}
# </style>
# """
# return weather_html
# except requests.exceptions.RequestException as e:
# return f"<p>Failed to fetch local weather: {e}</p>"
# with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
# with gr.Row():
# with gr.Column():
# state = gr.State()
# chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
# choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
# retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["Vector", "Knowledge-Graph"], value="Vector")
# gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
# chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt,click Retriever Only")
# tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
# retriever_button = gr.Button("Retriever")
# clear_button = gr.Button("Clear")
# clear_button.click(lambda:[None,None] ,outputs=[chat_input, state])
# gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
# location_output = gr.HTML()
# # Define a single audio component
# audio_output = gr.Audio(interactive=False, autoplay=True)
# def stop_audio():
# audio_output.stop()
# return None
# # Define the sequence of actions for the "Retriever" button
# retriever_sequence = (
# retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
# .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
# .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response")
# .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
# .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
# )
# # Link the "Enter" key (submit event) to the same sequence of actions
# chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
# chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
# fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
# ).then(
# fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
# ).then(
# fn=clear_textbox, inputs=[], outputs=[chat_input]
# )
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
# audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
# #Api Integration to gradio call function
# # with gr.Column():
# # weather_output = gr.HTML(value=fetch_local_weather())
# # news_output = gr.HTML(value=fetch_local_news())
# # events_output = gr.HTML(value=fetch_local_events())
# with gr.Column():
# image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
# image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
# image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
# refresh_button = gr.Button("Refresh Images")
# refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
# demo.queue()
# demo.launch(share=True)
# Main code header Library
import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from huggingface_hub import login
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from scipy.io.wavfile import write as write_wav
from pydub import AudioSegment
from string import punctuation
import librosa
from pathlib import Path
import torchaudio
import numpy as np
# Neo4j imports
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_community.document_loaders import HuggingFaceDatasetLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
# Set environment variables for Torch- CUDA
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# Hugging face token Initialization
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
print("Please set your Hugging Face token in the environment variables.")
else:
login(token=hf_token)
logging.basicConfig(level=logging.DEBUG)
# Embedding the vector with OpenAI
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "radardata07242024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Prompt templates
def get_current_date():
return datetime.now().strftime("%B %d, %Y")
current_date = get_current_date()
template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
It was my pleasure!
{{context}}
Question: {{question}}
Helpful Answer:"""
template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""
# QA_Chain_templates
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Neo4j setup
graph = Neo4jGraph(
url="neo4j+s://98f45cc0.databases.neo4j.io",
username="neo4j",
password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
)
# Avoid pushing the graph documents to Neo4j every time
# Only push the documents once and comment the code below after the initial push
# dataset_name = "Pijush2023/birmindata07312024"
# page_content_column = 'events_description'
# loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# data = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# documents = text_splitter.split_documents(data)
# llm_transformer = LLMGraphTransformer(llm=chat_model)
# graph_documents = llm_transformer.convert_to_graph_documents(documents)
# graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
class Entities(BaseModel):
names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
# Remove Lucene Character
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "}))
# Full Text query Generator
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
# Neo4j Retrieval connection
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
_search_query = RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
| StrOutputParser(),
),
RunnableLambda(lambda x : x["question"]),
)
# Define conversational and detailed prompt templates for Neo4j responses
neo4j_conversational_template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""
neo4j_details_template = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
It was my pleasure!
{{context}}
Question: {{question}}
Helpful Answer:"""
# Create prompt templates
QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL = PromptTemplate(input_variables=["context", "question"], template=neo4j_conversational_template)
QA_CHAIN_PROMPT_NEO4J_DETAILS = PromptTemplate(input_variables=["context", "question"], template=neo4j_details_template)
# Neo4j Retrieval chain for conversational mode
def neo4j_retrieval_conversational(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data (Conversational): {structured_data}")
prompt = QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL.format(context=structured_data, question=question)
response = chat_model({"query": prompt})
return response, []
# Neo4j Retrieval chain for detailed mode
def neo4j_retrieval_details(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data (Details): {structured_data}")
prompt = QA_CHAIN_PROMPT_NEO4J_DETAILS.format(context=structured_data, question=question)
response = chat_model({"query": prompt})
return response, extract_addresses(response)
# Update the generate_answer function to include Neo4j retrieval modes
def generate_answer(message, choice, retrieval_mode):
logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
if retrieval_mode == "Vector":
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain({"query": message})
logging.debug(f"Vector response: {response}")
return response['result'], extract_addresses(response['result'])
elif retrieval_mode == "Knowledge-Graph":
if choice == "Details":
response, addresses = neo4j_retrieval_details(message)
else:
response, addresses = neo4j_retrieval_conversational(message)
logging.debug(f"Knowledge-Graph response: {response}")
return response, addresses
else:
return "Invalid retrieval mode selected.", []
# Full Text query Generator
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
# Rest of the code remains the same
def bot(history, choice, tts_choice, retrieval_mode):
if not history:
return history
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode)
history[-1][1] = ""
with concurrent.futures.ThreadPoolExecutor() as executor:
if tts_choice == "Alpha":
audio_future = executor.submit(generate_audio_elevenlabs, response)
elif tts_choice == "Beta":
audio_future = executor.submit(generate_audio_parler_tts, response)
elif tts_choice == "Gamma":
audio_future = executor.submit(generate_audio_mars5, response)
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history, None
audio_path = audio_future.result()
yield history, audio_path
history.append([response, None]) # Ensure the response is added in the correct format
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def extract_addresses(response):
if not isinstance(response, str):
response = str(response)
address_patterns = [
r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
r'([A-Z].*,\sAL\s\d{5})',
r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
r'(\d{2}.*\sStreets)',
r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
r'([a-zA-Z]\s Birmingham)',
r'([a-zA-Z].*,\sBirmingham,\sAL)',
r'(^Birmingham,AL$)'
]
addresses = []
for pattern in address_patterns:
addresses.extend(re.findall(pattern, response))
return addresses
all_addresses = []
def generate_map(location_names):
global all_addresses
all_addresses.extend(location_names)
api_key = os.environ['GOOGLEMAPS_API_KEY']
gmaps = GoogleMapsClient(key=api_key)
m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
for location_name in all_addresses:
geocode_result = gmaps.geocode(location_name)
if geocode_result:
location = geocode_result[0]['geometry']['location']
folium.Marker(
[location['lat'], location['lng']],
tooltip=f"{geocode_result[0]['formatted_address']}"
).add_to(m)
map_html = m._repr_html_()
return map_html
def fetch_local_news():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("news_results", [])
news_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
<style>
.news-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.news-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.news-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.news-item a:hover {
text-decoration: underline;
}
.news-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('news-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('news-preview');
previewBox.style.display = 'none';
}
</script>
<div id="news-preview" class="news-preview"></div>
"""
for index, result in enumerate(results[:7]):
title = result.get("title", "No title")
link = result.get("link", "#")
snippet = result.get("snippet", "")
news_html += f"""
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>{snippet}</p>
</div>
"""
return news_html
else:
return "<p>Failed to fetch local news</p>"
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
base_audio_drive = "/data/audio"
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
y = y.astype(np.float32) / np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text","")
return stream, full_text, result
def update_map_with_response(history):
if not history:
return ""
response = history[-1][1]
addresses = extract_addresses(response)
return generate_map(addresses)
def clear_textbox():
return ""
def show_map_if_details(history, choice):
if choice in ["Details", "Conversational"]:
return gr.update(visible=True), update_map_with_response(history)
else:
return gr.update(visible=False), ""
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
audio_segments = []
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_segments.append(chunk)
temp_audio_path = f.name
# Combine all audio chunks into a single file
combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
combined_audio.export(combined_audio_path, format="mp3")
logging.debug(f"Audio saved to {combined_audio_path}")
return combined_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
repo_id = "parler-tts/parler-tts-mini-expresso"
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = parler_feature_extractor.sampling_rate
SEED = 42
def preprocess(text):
number_normalizer = EnglishNumberNormalizer()
text = number_normalizer(text).strip()
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".", "")
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text is text.replace(abv, separate_abb(abv))
return text
def chunk_text(text, max_length=250):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 <= max_length:
current_chunk.append(word)
current_length += len(word) + 1
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def generate_audio_parler_tts(text):
description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
chunks = chunk_text(preprocess(text))
audio_segments = []
for chunk in chunks:
inputs = parler_tokenizer(description, return_tensors="pt").to(device)
prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
set_seed(SEED)
generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
audio_arr = generation.cpu().numpy().squeeze()
temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
audio_segments.append(AudioSegment.from_wav(temp_audio_path))
combined_audio = sum(audio_segments)
combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
combined_audio.export(combined_audio_path, format="wav")
logging.debug(f"Audio saved to {combined_audio_path}")
return combined_audio_path
# Load the MARS5 model
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
def generate_audio_mars5(text):
description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
kwargs_dict = {
'temperature': 0.2,
'top_k': -1,
'top_p': 0.2,
'typical_p': 1.0,
'freq_penalty': 2.6,
'presence_penalty': 0.4,
'rep_penalty_window': 100,
'max_prompt_phones': 360,
'deep_clone': True,
'nar_guidance_w': 3
}
chunks = chunk_text(preprocess(text))
audio_segments = []
for chunk in chunks:
wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
audio_segments.append(AudioSegment.from_wav(temp_audio_path))
combined_audio = sum(audio_segments)
combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
combined_audio.export(combined_audio_path, format="wav")
logging.debug(f"Audio saved to {combined_audio_path}")
return combined_audio_path
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
pipe.to(device)
def generate_image(prompt):
with torch.cuda.amp.autocast():
image = pipe(
prompt,
num_inference_steps=28,
guidance_scale=3.0,
).images[0]
return image
hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
def update_images():
image_1 = generate_image(hardcoded_prompt_1)
image_2 = generate_image(hardcoded_prompt_2)
image_3 = generate_image(hardcoded_prompt_3)
return image_1, image_2, image_3
def fetch_local_events():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
events_results = response.json().get("events_results", [])
events_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
<style>
table {
font-family: 'Verdana', sans-serif;
color: #333;
border-collapse: collapse;
width: 100%;
}
th, td {
border: 1px solid #fff !important;
padding: 8px;
}
th {
background-color: #f2f2f2;
color: #333;
text-align: left;
}
tr:hover {
background-color: #f5f5f5;
}
.event-link {
color: #1E90FF;
text-decoration: none;
}
.event-link:hover {
text-decoration: underline;
}
</style>
<table>
<tr>
<th>Title</th>
<th>Date and Time</th>
<th>Location</th>
</tr>
"""
for event in events_results:
title = event.get("title", "No title")
date_info = event.get("date", {})
date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
location = event.get("address", "No location")
if isinstance(location, list):
location = " ".join(location)
location = location.replace("[", "").replace("]", "")
link = event.get("link", "#")
events_html += f"""
<tr>
<td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
<td>{date}</td>
<td>{location}</td>
</tr>
"""
events_html += "</table>"
return events_html
else:
return "<p>Failed to fetch local events</p>"
def get_weather_icon(condition):
condition_map = {
"Clear": "c01d",
"Partly Cloudy": "c02d",
"Cloudy": "c03d",
"Overcast": "c04d",
"Mist": "a01d",
"Patchy rain possible": "r01d",
"Light rain": "r02d",
"Moderate rain": "r03d",
"Heavy rain": "r04d",
"Snow": "s01d",
"Thunderstorm": "t01d",
"Fog": "a05d",
}
return condition_map.get(condition, "c04d")
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp_celsius = current_conditions.get("temp", "N/A")
if temp_celsius != "N/A":
temp_fahrenheit = int((temp_celsius * 9/5) + 32)
else:
temp_fahrenheit = "N/A"
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"""
<div class="weather-theme">
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
<div class="weather-content">
<div class="weather-icon">
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
</div>
<div class="weather-details">
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
</div>
</div>
</div>
<style>
.weather-theme {{
animation: backgroundAnimation 10s infinite alternate;
border-radius: 10px;
padding: 10px;
margin-bottom: 15px;
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
background-size: 400% 400%;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
transition: box-shadow 0.3s ease, background-color 0.3s ease;
}}
.weather-theme:hover {{
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
background-position: 100% 100%;
}}
@keyframes backgroundAnimation {{
0% {{ background-position: 0% 50%; }}
100% {{ background-position: 100% 50%; }}
}}
.weather-content {{
display: flex;
align-items: center;
}}
.weather-icon {{
flex: 1;
}}
.weather-details {{
flex 3;
}}
</style>
"""
return weather_html
except requests.exceptions.RequestException as e:
return f"<p>Failed to fetch local weather: {e}</p>"
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
with gr.Row():
with gr.Column():
state = gr.State()
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["Vector", "Knowledge-Graph"], value="Vector")
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt,click Retriever Only")
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
retriever_button = gr.Button("Retriever")
clear_button = gr.Button("Clear")
clear_button.click(lambda:[None,None] ,outputs=[chat_input, state])
gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
location_output = gr.HTML()
# Define a single audio component
audio_output = gr.Audio(interactive=False, autoplay=True)
def stop_audio():
audio_output.stop()
return None
# Define the sequence of actions for the "Retriever" button
retriever_sequence = (
retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
.then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
.then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response")
.then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
.then(fn=clear_textbox, inputs=[], outputs=[chat_input])
)
# Link the "Enter" key (submit event) to the same sequence of actions
chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
).then(
fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
).then(
fn=clear_textbox, inputs=[], outputs=[chat_input]
)
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
# Api Integration to gradio call function
# with gr.Column():
# weather_output = gr.HTML(value=fetch_local_weather())
# news_output = gr.HTML(value=fetch_local_news())
# events_output = gr.HTML(value=fetch_local_events())
with gr.Column():
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
refresh_button = gr.Button("Refresh Images")
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
demo.queue()
demo.launch(share=True)
|