Pijush2023 commited on
Commit
2221f84
·
verified ·
1 Parent(s): f74df83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +984 -71
app.py CHANGED
@@ -1,4 +1,961 @@
1
- #Main code header Library
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  import requests
4
  import os
@@ -44,12 +1001,11 @@ from langchain_core.messages import AIMessage, HumanMessage
44
  from langchain_core.output_parsers import StrOutputParser
45
  from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
46
 
47
- # Set environment variables for Torch- CUDA
48
  os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
49
  os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
50
 
51
- #Hugging face token Initilization
52
-
53
  hf_token = os.getenv("HF_TOKEN")
54
  if hf_token is None:
55
  print("Please set your Hugging Face token in the environment variables.")
@@ -58,8 +1014,7 @@ else:
58
 
59
  logging.basicConfig(level=logging.DEBUG)
60
 
61
- #Embedding the vector with openai
62
-
63
  embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
64
 
65
  # Pinecone setup
@@ -120,8 +1075,7 @@ In light of this, how can I assist you today? Feel free to ask any questions or
120
  Question: {{question}}
121
  Helpful Answer:"""
122
 
123
- #QA_Chain_templates
124
-
125
  QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
126
  QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
127
 
@@ -147,10 +1101,6 @@ graph = Neo4jGraph(
147
  # graph_documents = llm_transformer.convert_to_graph_documents(documents)
148
  # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
149
 
150
-
151
- #Neo4j Setup
152
-
153
-
154
  class Entities(BaseModel):
155
  names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
156
 
@@ -161,17 +1111,14 @@ entity_prompt = ChatPromptTemplate.from_messages([
161
 
162
  entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
163
 
164
-
165
- #Remove Lucene Characther
166
-
167
  def remove_lucene_chars(input: str) -> str:
168
  return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
169
  "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
170
  "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
171
  ";": r"\;", " ": r"\ "}))
172
 
173
- #Full Text query Generator
174
-
175
  def generate_full_text_query(input: str) -> str:
176
  full_text_query = ""
177
  words = [el for el in remove_lucene_chars(input).split() if el]
@@ -181,7 +1128,6 @@ def generate_full_text_query(input: str) -> str:
181
  return full_text_query.strip()
182
 
183
  # Neo4j Retrieval connection
184
-
185
  def structured_retriever(question: str) -> str:
186
  result = ""
187
  entities = entity_chain.invoke({"question": question})
@@ -241,12 +1187,6 @@ _search_query = RunnableBranch(
241
  RunnableLambda(lambda x : x["question"]),
242
  )
243
 
244
- # # template = """Answer the question based only on the following context:
245
- # {context}
246
- # Question: {question}
247
- # Use natural language and be concise.
248
- # Answer:"""
249
-
250
  # Define conversational and detailed prompt templates for Neo4j responses
251
  neo4j_conversational_template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
252
  In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
@@ -288,7 +1228,7 @@ Helpful Answer:"""
288
  QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL = PromptTemplate(input_variables=["context", "question"], template=neo4j_conversational_template)
289
  QA_CHAIN_PROMPT_NEO4J_DETAILS = PromptTemplate(input_variables=["context", "question"], template=neo4j_details_template)
290
 
291
- # Define Neo4j retrieval chain for conversational mode
292
  def neo4j_retrieval_conversational(question: str):
293
  structured_data = structured_retriever(question)
294
  logging.debug(f"Structured data (Conversational): {structured_data}")
@@ -296,7 +1236,7 @@ def neo4j_retrieval_conversational(question: str):
296
  response = chat_model({"query": prompt})
297
  return response, []
298
 
299
- # Define Neo4j retrieval chain for detailed mode
300
  def neo4j_retrieval_details(question: str):
301
  structured_data = structured_retriever(question)
302
  logging.debug(f"Structured data (Details): {structured_data}")
@@ -304,44 +1244,7 @@ def neo4j_retrieval_details(question: str):
304
  response = chat_model({"query": prompt})
305
  return response, extract_addresses(response)
306
 
307
-
308
- # qa_prompt = ChatPromptTemplate.from_template(template)
309
-
310
- chain_neo4j = (
311
- RunnableParallel(
312
- {
313
- "context": _search_query | retriever_neo4j,
314
- "question": RunnablePassthrough(),
315
- }
316
- )
317
- | qa_prompt
318
- | chat_model
319
- | StrOutputParser()
320
- )
321
-
322
- # Define a function to select between Pinecone and Neo4j
323
- # def generate_answer(message, choice, retrieval_mode):
324
- # logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
325
-
326
- # prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
327
-
328
- # if retrieval_mode == "Vector":
329
- # qa_chain = RetrievalQA.from_chain_type(
330
- # llm=chat_model,
331
- # chain_type="stuff",
332
- # retriever=retriever,
333
- # chain_type_kwargs={"prompt": prompt_template}
334
- # )
335
- # response = qa_chain({"query": message})
336
- # logging.debug(f"Vector response: {response}")
337
- # return response['result'], extract_addresses(response['result'])
338
- # elif retrieval_mode == "Knowledge-Graph":
339
- # response = chain_neo4j.invoke({"question": message})
340
- # logging.debug(f"Knowledge-Graph response: {response}")
341
- # return response, extract_addresses(response)
342
- # else:
343
- # return "Invalid retrieval mode selected.", []
344
-
345
  def generate_answer(message, choice, retrieval_mode):
346
  logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
347
 
@@ -367,6 +1270,16 @@ def generate_answer(message, choice, retrieval_mode):
367
  else:
368
  return "Invalid retrieval mode selected.", []
369
 
 
 
 
 
 
 
 
 
 
 
370
 
371
  def bot(history, choice, tts_choice, retrieval_mode):
372
  if not history:
@@ -434,11 +1347,11 @@ def generate_map(location_names):
434
  for location_name in all_addresses:
435
  geocode_result = gmaps.geocode(location_name)
436
  if geocode_result:
437
- location = geocode_result[0]['geometry']['location']
438
- folium.Marker(
439
- [location['lat'], location['lng']],
440
- tooltip=f"{geocode_result[0]['formatted_address']}"
441
- ).add_to(m)
442
 
443
  map_html = m._repr_html_()
444
  return map_html
@@ -606,7 +1519,6 @@ def generate_audio_elevenlabs(text):
606
  logging.error(f"Error generating audio: {response.text}")
607
  return None
608
 
609
-
610
  repo_id = "parler-tts/parler-tts-mini-expresso"
611
 
612
  parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
@@ -935,7 +1847,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
935
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
936
  audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
937
 
938
- #Api Integration to gradio call function
939
 
940
  # with gr.Column():
941
  # weather_output = gr.HTML(value=fetch_local_weather())
@@ -959,3 +1871,4 @@ demo.launch(share=True)
959
 
960
 
961
 
 
 
1
+ # #Main code header Library
2
+ # import gradio as gr
3
+ # import requests
4
+ # import os
5
+ # import time
6
+ # import re
7
+ # import logging
8
+ # import tempfile
9
+ # import folium
10
+ # import concurrent.futures
11
+ # import torch
12
+ # from PIL import Image
13
+ # from datetime import datetime
14
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
15
+ # from googlemaps import Client as GoogleMapsClient
16
+ # from gtts import gTTS
17
+ # from diffusers import StableDiffusionPipeline
18
+ # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
19
+ # from langchain_pinecone import PineconeVectorStore
20
+ # from langchain.prompts import PromptTemplate
21
+ # from langchain.chains import RetrievalQA
22
+ # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
23
+ # from huggingface_hub import login
24
+ # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
+ # from parler_tts import ParlerTTSForConditionalGeneration
26
+ # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
+ # from scipy.io.wavfile import write as write_wav
28
+ # from pydub import AudioSegment
29
+ # from string import punctuation
30
+ # import librosa
31
+ # from pathlib import Path
32
+ # import torchaudio
33
+ # import numpy as np
34
+
35
+ # # Neo4j imports
36
+ # from langchain.chains import GraphCypherQAChain
37
+ # from langchain_community.graphs import Neo4jGraph
38
+ # from langchain_community.document_loaders import HuggingFaceDatasetLoader
39
+ # from langchain_text_splitters import CharacterTextSplitter
40
+ # from langchain_experimental.graph_transformers import LLMGraphTransformer
41
+ # from langchain_core.prompts import ChatPromptTemplate
42
+ # from langchain_core.pydantic_v1 import BaseModel, Field
43
+ # from langchain_core.messages import AIMessage, HumanMessage
44
+ # from langchain_core.output_parsers import StrOutputParser
45
+ # from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
46
+
47
+ # # Set environment variables for Torch- CUDA
48
+ # os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
49
+ # os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
50
+
51
+ # #Hugging face token Initilization
52
+
53
+ # hf_token = os.getenv("HF_TOKEN")
54
+ # if hf_token is None:
55
+ # print("Please set your Hugging Face token in the environment variables.")
56
+ # else:
57
+ # login(token=hf_token)
58
+
59
+ # logging.basicConfig(level=logging.DEBUG)
60
+
61
+ # #Embedding the vector with openai
62
+
63
+ # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
64
+
65
+ # # Pinecone setup
66
+ # from pinecone import Pinecone
67
+ # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
68
+
69
+ # index_name = "radardata07242024"
70
+ # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
71
+ # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
72
+
73
+ # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
74
+
75
+ # conversational_memory = ConversationBufferWindowMemory(
76
+ # memory_key='chat_history',
77
+ # k=10,
78
+ # return_messages=True
79
+ # )
80
+
81
+ # # Prompt templates
82
+ # def get_current_date():
83
+ # return datetime.now().strftime("%B %d, %Y")
84
+
85
+ # current_date = get_current_date()
86
+
87
+ # template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
88
+ # If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
89
+ # Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
90
+ # Address: >>, Birmingham, AL
91
+ # Time: >>__
92
+ # Date: >>__
93
+ # Description: >>__
94
+ # Address: >>, Birmingham, AL
95
+ # Time: >>__
96
+ # Date: >>__
97
+ # Description: >>__
98
+ # Address: >>, Birmingham, AL
99
+ # Time: >>__
100
+ # Date: >>__
101
+ # Description: >>__
102
+ # Address: >>, Birmingham, AL
103
+ # Time: >>__
104
+ # Date: >>__
105
+ # Description: >>__
106
+ # Address: >>, Birmingham, AL
107
+ # Time: >>__
108
+ # Date: >>__
109
+ # Description: >>__
110
+ # If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
111
+ # It was my pleasure!
112
+ # {{context}}
113
+ # Question: {{question}}
114
+ # Helpful Answer:"""
115
+
116
+ # template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
117
+ # In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
118
+ # "It was my pleasure!"
119
+ # {{context}}
120
+ # Question: {{question}}
121
+ # Helpful Answer:"""
122
+
123
+ # #QA_Chain_templates
124
+
125
+ # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
126
+ # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
127
+
128
+ # # Neo4j setup
129
+ # graph = Neo4jGraph(
130
+ # url="neo4j+s://98f45cc0.databases.neo4j.io",
131
+ # username="neo4j",
132
+ # password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
133
+ # )
134
+
135
+ # # Avoid pushing the graph documents to Neo4j every time
136
+
137
+ # # Only push the documents once and comment the code below after the initial push
138
+ # # dataset_name = "Pijush2023/birmindata07312024"
139
+ # # page_content_column = 'events_description'
140
+ # # loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
141
+ # # data = loader.load()
142
+
143
+ # # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
144
+ # # documents = text_splitter.split_documents(data)
145
+
146
+ # # llm_transformer = LLMGraphTransformer(llm=chat_model)
147
+ # # graph_documents = llm_transformer.convert_to_graph_documents(documents)
148
+ # # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
149
+
150
+
151
+ # #Neo4j Setup
152
+
153
+
154
+ # class Entities(BaseModel):
155
+ # names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
156
+
157
+ # entity_prompt = ChatPromptTemplate.from_messages([
158
+ # ("system", "You are extracting organization and person entities from the text."),
159
+ # ("human", "Use the given format to extract information from the following input: {question}"),
160
+ # ])
161
+
162
+ # entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
163
+
164
+
165
+ # #Remove Lucene Characther
166
+
167
+ # def remove_lucene_chars(input: str) -> str:
168
+ # return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
169
+ # "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
170
+ # "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
171
+ # ";": r"\;", " ": r"\ "}))
172
+
173
+ # #Full Text query Generator
174
+
175
+ # def generate_full_text_query(input: str) -> str:
176
+ # full_text_query = ""
177
+ # words = [el for el in remove_lucene_chars(input).split() if el]
178
+ # for word in words[:-1]:
179
+ # full_text_query += f" {word}~2 AND"
180
+ # full_text_query += f" {words[-1]}~2"
181
+ # return full_text_query.strip()
182
+
183
+ # # Neo4j Retrieval connection
184
+
185
+ # def structured_retriever(question: str) -> str:
186
+ # result = ""
187
+ # entities = entity_chain.invoke({"question": question})
188
+ # for entity in entities.names:
189
+ # response = graph.query(
190
+ # """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
191
+ # YIELD node,score
192
+ # CALL {
193
+ # WITH node
194
+ # MATCH (node)-[r:!MENTIONS]->(neighbor)
195
+ # RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
196
+ # UNION ALL
197
+ # WITH node
198
+ # MATCH (node)<-[r:!MENTIONS]-(neighbor)
199
+ # RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
200
+ # }
201
+ # RETURN output LIMIT 50
202
+ # """,
203
+ # {"query": generate_full_text_query(entity)},
204
+ # )
205
+ # result += "\n".join([el['output'] for el in response])
206
+ # return result
207
+
208
+ # def retriever_neo4j(question: str):
209
+ # structured_data = structured_retriever(question)
210
+ # logging.debug(f"Structured data: {structured_data}")
211
+ # return structured_data
212
+
213
+ # _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
214
+ # in its original language.
215
+ # Chat History:
216
+ # {chat_history}
217
+ # Follow Up Input: {question}
218
+ # Standalone question:"""
219
+
220
+ # CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
221
+
222
+ # def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
223
+ # buffer = []
224
+ # for human, ai in chat_history:
225
+ # buffer.append(HumanMessage(content=human))
226
+ # buffer.append(AIMessage(content=ai))
227
+ # return buffer
228
+
229
+ # _search_query = RunnableBranch(
230
+ # (
231
+ # RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
232
+ # run_name="HasChatHistoryCheck"
233
+ # ),
234
+ # RunnablePassthrough.assign(
235
+ # chat_history=lambda x: _format_chat_history(x["chat_history"])
236
+ # )
237
+ # | CONDENSE_QUESTION_PROMPT
238
+ # | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
239
+ # | StrOutputParser(),
240
+ # ),
241
+ # RunnableLambda(lambda x : x["question"]),
242
+ # )
243
+
244
+ # # # template = """Answer the question based only on the following context:
245
+ # # {context}
246
+ # # Question: {question}
247
+ # # Use natural language and be concise.
248
+ # # Answer:"""
249
+
250
+ # # Define conversational and detailed prompt templates for Neo4j responses
251
+ # neo4j_conversational_template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
252
+ # In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
253
+ # "It was my pleasure!"
254
+ # {{context}}
255
+ # Question: {{question}}
256
+ # Helpful Answer:"""
257
+
258
+ # neo4j_details_template = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
259
+ # If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
260
+ # Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
261
+ # Address: >>, Birmingham, AL
262
+ # Time: >>__
263
+ # Date: >>__
264
+ # Description: >>__
265
+ # Address: >>, Birmingham, AL
266
+ # Time: >>__
267
+ # Date: >>__
268
+ # Description: >>__
269
+ # Address: >>, Birmingham, AL
270
+ # Time: >>__
271
+ # Date: >>__
272
+ # Description: >>__
273
+ # Address: >>, Birmingham, AL
274
+ # Time: >>__
275
+ # Date: >>__
276
+ # Description: >>__
277
+ # Address: >>, Birmingham, AL
278
+ # Time: >>__
279
+ # Date: >>__
280
+ # Description: >>__
281
+ # If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
282
+ # It was my pleasure!
283
+ # {{context}}
284
+ # Question: {{question}}
285
+ # Helpful Answer:"""
286
+
287
+ # # Create prompt templates
288
+ # QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL = PromptTemplate(input_variables=["context", "question"], template=neo4j_conversational_template)
289
+ # QA_CHAIN_PROMPT_NEO4J_DETAILS = PromptTemplate(input_variables=["context", "question"], template=neo4j_details_template)
290
+
291
+ # # Define Neo4j retrieval chain for conversational mode
292
+ # def neo4j_retrieval_conversational(question: str):
293
+ # structured_data = structured_retriever(question)
294
+ # logging.debug(f"Structured data (Conversational): {structured_data}")
295
+ # prompt = QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL.format(context=structured_data, question=question)
296
+ # response = chat_model({"query": prompt})
297
+ # return response, []
298
+
299
+ # # Define Neo4j retrieval chain for detailed mode
300
+ # def neo4j_retrieval_details(question: str):
301
+ # structured_data = structured_retriever(question)
302
+ # logging.debug(f"Structured data (Details): {structured_data}")
303
+ # prompt = QA_CHAIN_PROMPT_NEO4J_DETAILS.format(context=structured_data, question=question)
304
+ # response = chat_model({"query": prompt})
305
+ # return response, extract_addresses(response)
306
+
307
+
308
+ # # qa_prompt = ChatPromptTemplate.from_template(template)
309
+
310
+ # chain_neo4j = (
311
+ # RunnableParallel(
312
+ # {
313
+ # "context": _search_query | retriever_neo4j,
314
+ # "question": RunnablePassthrough(),
315
+ # }
316
+ # )
317
+ # | qa_prompt
318
+ # | chat_model
319
+ # | StrOutputParser()
320
+ # )
321
+
322
+ # # Define a function to select between Pinecone and Neo4j
323
+ # # def generate_answer(message, choice, retrieval_mode):
324
+ # # logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
325
+
326
+ # # prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
327
+
328
+ # # if retrieval_mode == "Vector":
329
+ # # qa_chain = RetrievalQA.from_chain_type(
330
+ # # llm=chat_model,
331
+ # # chain_type="stuff",
332
+ # # retriever=retriever,
333
+ # # chain_type_kwargs={"prompt": prompt_template}
334
+ # # )
335
+ # # response = qa_chain({"query": message})
336
+ # # logging.debug(f"Vector response: {response}")
337
+ # # return response['result'], extract_addresses(response['result'])
338
+ # # elif retrieval_mode == "Knowledge-Graph":
339
+ # # response = chain_neo4j.invoke({"question": message})
340
+ # # logging.debug(f"Knowledge-Graph response: {response}")
341
+ # # return response, extract_addresses(response)
342
+ # # else:
343
+ # # return "Invalid retrieval mode selected.", []
344
+
345
+ # def generate_answer(message, choice, retrieval_mode):
346
+ # logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
347
+
348
+ # prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
349
+
350
+ # if retrieval_mode == "Vector":
351
+ # qa_chain = RetrievalQA.from_chain_type(
352
+ # llm=chat_model,
353
+ # chain_type="stuff",
354
+ # retriever=retriever,
355
+ # chain_type_kwargs={"prompt": prompt_template}
356
+ # )
357
+ # response = qa_chain({"query": message})
358
+ # logging.debug(f"Vector response: {response}")
359
+ # return response['result'], extract_addresses(response['result'])
360
+ # elif retrieval_mode == "Knowledge-Graph":
361
+ # if choice == "Details":
362
+ # response, addresses = neo4j_retrieval_details(message)
363
+ # else:
364
+ # response, addresses = neo4j_retrieval_conversational(message)
365
+ # logging.debug(f"Knowledge-Graph response: {response}")
366
+ # return response, addresses
367
+ # else:
368
+ # return "Invalid retrieval mode selected.", []
369
+
370
+
371
+ # def bot(history, choice, tts_choice, retrieval_mode):
372
+ # if not history:
373
+ # return history
374
+
375
+ # response, addresses = generate_answer(history[-1][0], choice, retrieval_mode)
376
+ # history[-1][1] = ""
377
+
378
+ # with concurrent.futures.ThreadPoolExecutor() as executor:
379
+ # if tts_choice == "Alpha":
380
+ # audio_future = executor.submit(generate_audio_elevenlabs, response)
381
+ # elif tts_choice == "Beta":
382
+ # audio_future = executor.submit(generate_audio_parler_tts, response)
383
+ # elif tts_choice == "Gamma":
384
+ # audio_future = executor.submit(generate_audio_mars5, response)
385
+
386
+ # for character in response:
387
+ # history[-1][1] += character
388
+ # time.sleep(0.05)
389
+ # yield history, None
390
+
391
+ # audio_path = audio_future.result()
392
+ # yield history, audio_path
393
+
394
+ # history.append([response, None]) # Ensure the response is added in the correct format
395
+
396
+ # def add_message(history, message):
397
+ # history.append((message, None))
398
+ # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
399
+
400
+ # def print_like_dislike(x: gr.LikeData):
401
+ # print(x.index, x.value, x.liked)
402
+
403
+ # def extract_addresses(response):
404
+ # if not isinstance(response, str):
405
+ # response = str(response)
406
+ # address_patterns = [
407
+ # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
408
+ # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
409
+ # r'([A-Z].*,\sAL\s\d{5})',
410
+ # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
411
+ # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
412
+ # r'(\d{2}.*\sStreets)',
413
+ # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
414
+ # r'([a-zA-Z]\s Birmingham)',
415
+ # r'([a-zA-Z].*,\sBirmingham,\sAL)',
416
+ # r'(^Birmingham,AL$)'
417
+ # ]
418
+ # addresses = []
419
+ # for pattern in address_patterns:
420
+ # addresses.extend(re.findall(pattern, response))
421
+ # return addresses
422
+
423
+ # all_addresses = []
424
+
425
+ # def generate_map(location_names):
426
+ # global all_addresses
427
+ # all_addresses.extend(location_names)
428
+
429
+ # api_key = os.environ['GOOGLEMAPS_API_KEY']
430
+ # gmaps = GoogleMapsClient(key=api_key)
431
+
432
+ # m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
433
+
434
+ # for location_name in all_addresses:
435
+ # geocode_result = gmaps.geocode(location_name)
436
+ # if geocode_result:
437
+ # location = geocode_result[0]['geometry']['location']
438
+ # folium.Marker(
439
+ # [location['lat'], location['lng']],
440
+ # tooltip=f"{geocode_result[0]['formatted_address']}"
441
+ # ).add_to(m)
442
+
443
+ # map_html = m._repr_html_()
444
+ # return map_html
445
+
446
+ # def fetch_local_news():
447
+ # api_key = os.environ['SERP_API']
448
+ # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
449
+ # response = requests.get(url)
450
+ # if response.status_code == 200:
451
+ # results = response.json().get("news_results", [])
452
+ # news_html = """
453
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
454
+ # <style>
455
+ # .news-item {
456
+ # font-family: 'Verdana', sans-serif;
457
+ # color: #333;
458
+ # background-color: #f0f8ff;
459
+ # margin-bottom: 15px;
460
+ # padding: 10px;
461
+ # border-radius: 5px;
462
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
463
+ # font-weight: bold;
464
+ # }
465
+ # .news-item:hover {
466
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
467
+ # background-color: #e6f7ff;
468
+ # }
469
+ # .news-item a {
470
+ # color: #1E90FF;
471
+ # text-decoration: none;
472
+ # font-weight: bold;
473
+ # }
474
+ # .news-item a:hover {
475
+ # text-decoration: underline;
476
+ # }
477
+ # .news-preview {
478
+ # position: absolute;
479
+ # display: none;
480
+ # border: 1px solid #ccc;
481
+ # border-radius: 5px;
482
+ # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
483
+ # background-color: white;
484
+ # z-index: 1000;
485
+ # max-width: 300px;
486
+ # padding: 10px;
487
+ # font-family: 'Verdana', sans-serif;
488
+ # color: #333;
489
+ # }
490
+ # </style>
491
+ # <script>
492
+ # function showPreview(event, previewContent) {
493
+ # var previewBox = document.getElementById('news-preview');
494
+ # previewBox.innerHTML = previewContent;
495
+ # previewBox.style.left = event.pageX + 'px';
496
+ # previewBox.style.top = event.pageY + 'px';
497
+ # previewBox.style.display = 'block';
498
+ # }
499
+ # function hidePreview() {
500
+ # var previewBox = document.getElementById('news-preview');
501
+ # previewBox.style.display = 'none';
502
+ # }
503
+ # </script>
504
+ # <div id="news-preview" class="news-preview"></div>
505
+ # """
506
+ # for index, result in enumerate(results[:7]):
507
+ # title = result.get("title", "No title")
508
+ # link = result.get("link", "#")
509
+ # snippet = result.get("snippet", "")
510
+ # news_html += f"""
511
+ # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
512
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
513
+ # <p>{snippet}</p>
514
+ # </div>
515
+ # """
516
+ # return news_html
517
+ # else:
518
+ # return "<p>Failed to fetch local news</p>"
519
+
520
+ # import numpy as np
521
+ # import torch
522
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
523
+
524
+ # model_id = 'openai/whisper-large-v3'
525
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
526
+ # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
527
+ # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
528
+ # processor = AutoProcessor.from_pretrained(model_id)
529
+
530
+ # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
531
+
532
+ # base_audio_drive = "/data/audio"
533
+
534
+ # def transcribe_function(stream, new_chunk):
535
+ # try:
536
+ # sr, y = new_chunk[0], new_chunk[1]
537
+ # except TypeError:
538
+ # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
539
+ # return stream, "", None
540
+
541
+ # y = y.astype(np.float32) / np.max(np.abs(y))
542
+
543
+ # if stream is not None:
544
+ # stream = np.concatenate([stream, y])
545
+ # else:
546
+ # stream = y
547
+
548
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
549
+
550
+ # full_text = result.get("text","")
551
+
552
+ # return stream, full_text, result
553
+
554
+ # def update_map_with_response(history):
555
+ # if not history:
556
+ # return ""
557
+ # response = history[-1][1]
558
+ # addresses = extract_addresses(response)
559
+ # return generate_map(addresses)
560
+
561
+ # def clear_textbox():
562
+ # return ""
563
+
564
+ # def show_map_if_details(history, choice):
565
+ # if choice in ["Details", "Conversational"]:
566
+ # return gr.update(visible=True), update_map_with_response(history)
567
+ # else:
568
+ # return gr.update(visible=False), ""
569
+
570
+ # def generate_audio_elevenlabs(text):
571
+ # XI_API_KEY = os.environ['ELEVENLABS_API']
572
+ # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
573
+ # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
574
+ # headers = {
575
+ # "Accept": "application/json",
576
+ # "xi-api-key": XI_API_KEY
577
+ # }
578
+ # data = {
579
+ # "text": str(text),
580
+ # "model_id": "eleven_multilingual_v2",
581
+ # "voice_settings": {
582
+ # "stability": 1.0,
583
+ # "similarity_boost": 0.0,
584
+ # "style": 0.60,
585
+ # "use_speaker_boost": False
586
+ # }
587
+ # }
588
+ # response = requests.post(tts_url, headers=headers, json=data, stream=True)
589
+ # if response.ok:
590
+ # audio_segments = []
591
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
592
+ # for chunk in response.iter_content(chunk_size=1024):
593
+ # if chunk:
594
+ # f.write(chunk)
595
+ # audio_segments.append(chunk)
596
+ # temp_audio_path = f.name
597
+
598
+ # # Combine all audio chunks into a single file
599
+ # combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
600
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
601
+ # combined_audio.export(combined_audio_path, format="mp3")
602
+
603
+ # logging.debug(f"Audio saved to {combined_audio_path}")
604
+ # return combined_audio_path
605
+ # else:
606
+ # logging.error(f"Error generating audio: {response.text}")
607
+ # return None
608
+
609
+
610
+ # repo_id = "parler-tts/parler-tts-mini-expresso"
611
+
612
+ # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
613
+ # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
614
+ # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
615
+
616
+ # SAMPLE_RATE = parler_feature_extractor.sampling_rate
617
+ # SEED = 42
618
+
619
+ # def preprocess(text):
620
+ # number_normalizer = EnglishNumberNormalizer()
621
+ # text = number_normalizer(text).strip()
622
+ # if text[-1] not in punctuation:
623
+ # text = f"{text}."
624
+
625
+ # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
626
+
627
+ # def separate_abb(chunk):
628
+ # chunk = chunk.replace(".", "")
629
+ # return " ".join(chunk)
630
+
631
+ # abbreviations = re.findall(abbreviations_pattern, text)
632
+ # for abv in abbreviations:
633
+ # if abv in text:
634
+ # text is text.replace(abv, separate_abb(abv))
635
+ # return text
636
+
637
+ # def chunk_text(text, max_length=250):
638
+ # words = text.split()
639
+ # chunks = []
640
+ # current_chunk = []
641
+ # current_length = 0
642
+
643
+ # for word in words:
644
+ # if current_length + len(word) + 1 <= max_length:
645
+ # current_chunk.append(word)
646
+ # current_length += len(word) + 1
647
+ # else:
648
+ # chunks.append(' '.join(current_chunk))
649
+ # current_chunk = [word]
650
+ # current_length = len(word) + 1
651
+
652
+ # if current_chunk:
653
+ # chunks.append(' '.join(current_chunk))
654
+
655
+ # return chunks
656
+
657
+ # def generate_audio_parler_tts(text):
658
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
659
+ # chunks = chunk_text(preprocess(text))
660
+ # audio_segments = []
661
+
662
+ # for chunk in chunks:
663
+ # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
664
+ # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
665
+
666
+ # set_seed(SEED)
667
+ # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
668
+ # audio_arr = generation.cpu().numpy().squeeze()
669
+
670
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
671
+ # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
672
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
673
+
674
+ # combined_audio = sum(audio_segments)
675
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
676
+ # combined_audio.export(combined_audio_path, format="wav")
677
+
678
+ # logging.debug(f"Audio saved to {combined_audio_path}")
679
+ # return combined_audio_path
680
+
681
+ # # Load the MARS5 model
682
+ # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
683
+
684
+ # def generate_audio_mars5(text):
685
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
686
+ # kwargs_dict = {
687
+ # 'temperature': 0.2,
688
+ # 'top_k': -1,
689
+ # 'top_p': 0.2,
690
+ # 'typical_p': 1.0,
691
+ # 'freq_penalty': 2.6,
692
+ # 'presence_penalty': 0.4,
693
+ # 'rep_penalty_window': 100,
694
+ # 'max_prompt_phones': 360,
695
+ # 'deep_clone': True,
696
+ # 'nar_guidance_w': 3
697
+ # }
698
+
699
+ # chunks = chunk_text(preprocess(text))
700
+ # audio_segments = []
701
+
702
+ # for chunk in chunks:
703
+ # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
704
+ # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
705
+ # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
706
+
707
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
708
+ # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
709
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
710
+
711
+ # combined_audio = sum(audio_segments)
712
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
713
+ # combined_audio.export(combined_audio_path, format="wav")
714
+
715
+ # logging.debug(f"Audio saved to {combined_audio_path}")
716
+ # return combined_audio_path
717
+
718
+ # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
719
+ # pipe.to(device)
720
+
721
+ # def generate_image(prompt):
722
+ # with torch.cuda.amp.autocast():
723
+ # image = pipe(
724
+ # prompt,
725
+ # num_inference_steps=28,
726
+ # guidance_scale=3.0,
727
+ # ).images[0]
728
+ # return image
729
+
730
+ # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
731
+ # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
732
+ # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
733
+
734
+ # def update_images():
735
+ # image_1 = generate_image(hardcoded_prompt_1)
736
+ # image_2 = generate_image(hardcoded_prompt_2)
737
+ # image_3 = generate_image(hardcoded_prompt_3)
738
+ # return image_1, image_2, image_3
739
+
740
+ # def fetch_local_events():
741
+ # api_key = os.environ['SERP_API']
742
+ # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
743
+ # response = requests.get(url)
744
+ # if response.status_code == 200:
745
+ # events_results = response.json().get("events_results", [])
746
+ # events_html = """
747
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
748
+ # <style>
749
+ # table {
750
+ # font-family: 'Verdana', sans-serif;
751
+ # color: #333;
752
+ # border-collapse: collapse;
753
+ # width: 100%;
754
+ # }
755
+ # th, td {
756
+ # border: 1px solid #fff !important;
757
+ # padding: 8px;
758
+ # }
759
+ # th {
760
+ # background-color: #f2f2f2;
761
+ # color: #333;
762
+ # text-align: left;
763
+ # }
764
+ # tr:hover {
765
+ # background-color: #f5f5f5;
766
+ # }
767
+ # .event-link {
768
+ # color: #1E90FF;
769
+ # text-decoration: none;
770
+ # }
771
+ # .event-link:hover {
772
+ # text-decoration: underline;
773
+ # }
774
+ # </style>
775
+ # <table>
776
+ # <tr>
777
+ # <th>Title</th>
778
+ # <th>Date and Time</th>
779
+ # <th>Location</th>
780
+ # </tr>
781
+ # """
782
+ # for event in events_results:
783
+ # title = event.get("title", "No title")
784
+ # date_info = event.get("date", {})
785
+ # date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
786
+ # location = event.get("address", "No location")
787
+ # if isinstance(location, list):
788
+ # location = " ".join(location)
789
+ # location = location.replace("[", "").replace("]", "")
790
+ # link = event.get("link", "#")
791
+ # events_html += f"""
792
+ # <tr>
793
+ # <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
794
+ # <td>{date}</td>
795
+ # <td>{location}</td>
796
+ # </tr>
797
+ # """
798
+ # events_html += "</table>"
799
+ # return events_html
800
+ # else:
801
+ # return "<p>Failed to fetch local events</p>"
802
+
803
+ # def get_weather_icon(condition):
804
+ # condition_map = {
805
+ # "Clear": "c01d",
806
+ # "Partly Cloudy": "c02d",
807
+ # "Cloudy": "c03d",
808
+ # "Overcast": "c04d",
809
+ # "Mist": "a01d",
810
+ # "Patchy rain possible": "r01d",
811
+ # "Light rain": "r02d",
812
+ # "Moderate rain": "r03d",
813
+ # "Heavy rain": "r04d",
814
+ # "Snow": "s01d",
815
+ # "Thunderstorm": "t01d",
816
+ # "Fog": "a05d",
817
+ # }
818
+ # return condition_map.get(condition, "c04d")
819
+
820
+ # def fetch_local_weather():
821
+ # try:
822
+ # api_key = os.environ['WEATHER_API']
823
+ # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
824
+ # response = requests.get(url)
825
+ # response.raise_for_status()
826
+ # jsonData = response.json()
827
+
828
+ # current_conditions = jsonData.get("currentConditions", {})
829
+ # temp_celsius = current_conditions.get("temp", "N/A")
830
+
831
+ # if temp_celsius != "N/A":
832
+ # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
833
+ # else:
834
+ # temp_fahrenheit = "N/A"
835
+
836
+ # condition = current_conditions.get("conditions", "N/A")
837
+ # humidity = current_conditions.get("humidity", "N/A")
838
+
839
+ # weather_html = f"""
840
+ # <div class="weather-theme">
841
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
842
+ # <div class="weather-content">
843
+ # <div class="weather-icon">
844
+ # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
845
+ # </div>
846
+ # <div class="weather-details">
847
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
848
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
849
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
850
+ # </div>
851
+ # </div>
852
+ # </div>
853
+ # <style>
854
+ # .weather-theme {{
855
+ # animation: backgroundAnimation 10s infinite alternate;
856
+ # border-radius: 10px;
857
+ # padding: 10px;
858
+ # margin-bottom: 15px;
859
+ # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
860
+ # background-size: 400% 400%;
861
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
862
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
863
+ # }}
864
+ # .weather-theme:hover {{
865
+ # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
866
+ # background-position: 100% 100%;
867
+ # }}
868
+ # @keyframes backgroundAnimation {{
869
+ # 0% {{ background-position: 0% 50%; }}
870
+ # 100% {{ background-position: 100% 50%; }}
871
+ # }}
872
+ # .weather-content {{
873
+ # display: flex;
874
+ # align-items: center;
875
+ # }}
876
+ # .weather-icon {{
877
+ # flex: 1;
878
+ # }}
879
+ # .weather-details {{
880
+ # flex 3;
881
+ # }}
882
+ # </style>
883
+ # """
884
+ # return weather_html
885
+ # except requests.exceptions.RequestException as e:
886
+ # return f"<p>Failed to fetch local weather: {e}</p>"
887
+
888
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
889
+ # with gr.Row():
890
+ # with gr.Column():
891
+ # state = gr.State()
892
+
893
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
894
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
895
+ # retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["Vector", "Knowledge-Graph"], value="Vector")
896
+
897
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
898
+
899
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt,click Retriever Only")
900
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
901
+ # retriever_button = gr.Button("Retriever")
902
+
903
+ # clear_button = gr.Button("Clear")
904
+ # clear_button.click(lambda:[None,None] ,outputs=[chat_input, state])
905
+
906
+ # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
907
+ # location_output = gr.HTML()
908
+
909
+ # # Define a single audio component
910
+ # audio_output = gr.Audio(interactive=False, autoplay=True)
911
+
912
+ # def stop_audio():
913
+ # audio_output.stop()
914
+ # return None
915
+
916
+ # # Define the sequence of actions for the "Retriever" button
917
+ # retriever_sequence = (
918
+ # retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
919
+ # .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
920
+ # .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response")
921
+ # .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
922
+ # .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
923
+ # )
924
+
925
+ # # Link the "Enter" key (submit event) to the same sequence of actions
926
+ # chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
927
+ # chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
928
+ # fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
929
+ # ).then(
930
+ # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
931
+ # ).then(
932
+ # fn=clear_textbox, inputs=[], outputs=[chat_input]
933
+ # )
934
+
935
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
936
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
937
+
938
+ # #Api Integration to gradio call function
939
+
940
+ # # with gr.Column():
941
+ # # weather_output = gr.HTML(value=fetch_local_weather())
942
+ # # news_output = gr.HTML(value=fetch_local_news())
943
+ # # events_output = gr.HTML(value=fetch_local_events())
944
+
945
+ # with gr.Column():
946
+ # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
947
+ # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
948
+ # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
949
+
950
+ # refresh_button = gr.Button("Refresh Images")
951
+ # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
952
+
953
+ # demo.queue()
954
+ # demo.launch(share=True)
955
+
956
+
957
+
958
+ # Main code header Library
959
  import gradio as gr
960
  import requests
961
  import os
 
1001
  from langchain_core.output_parsers import StrOutputParser
1002
  from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
1003
 
1004
+ # Set environment variables for Torch- CUDA
1005
  os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
1006
  os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
1007
 
1008
+ # Hugging face token Initialization
 
1009
  hf_token = os.getenv("HF_TOKEN")
1010
  if hf_token is None:
1011
  print("Please set your Hugging Face token in the environment variables.")
 
1014
 
1015
  logging.basicConfig(level=logging.DEBUG)
1016
 
1017
+ # Embedding the vector with OpenAI
 
1018
  embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
1019
 
1020
  # Pinecone setup
 
1075
  Question: {{question}}
1076
  Helpful Answer:"""
1077
 
1078
+ # QA_Chain_templates
 
1079
  QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
1080
  QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
1081
 
 
1101
  # graph_documents = llm_transformer.convert_to_graph_documents(documents)
1102
  # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
1103
 
 
 
 
 
1104
  class Entities(BaseModel):
1105
  names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
1106
 
 
1111
 
1112
  entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
1113
 
1114
+ # Remove Lucene Character
 
 
1115
  def remove_lucene_chars(input: str) -> str:
1116
  return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
1117
  "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
1118
  "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
1119
  ";": r"\;", " ": r"\ "}))
1120
 
1121
+ # Full Text query Generator
 
1122
  def generate_full_text_query(input: str) -> str:
1123
  full_text_query = ""
1124
  words = [el for el in remove_lucene_chars(input).split() if el]
 
1128
  return full_text_query.strip()
1129
 
1130
  # Neo4j Retrieval connection
 
1131
  def structured_retriever(question: str) -> str:
1132
  result = ""
1133
  entities = entity_chain.invoke({"question": question})
 
1187
  RunnableLambda(lambda x : x["question"]),
1188
  )
1189
 
 
 
 
 
 
 
1190
  # Define conversational and detailed prompt templates for Neo4j responses
1191
  neo4j_conversational_template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
1192
  In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
 
1228
  QA_CHAIN_PROMPT_NEO4J_CONVERSATIONAL = PromptTemplate(input_variables=["context", "question"], template=neo4j_conversational_template)
1229
  QA_CHAIN_PROMPT_NEO4J_DETAILS = PromptTemplate(input_variables=["context", "question"], template=neo4j_details_template)
1230
 
1231
+ # Neo4j Retrieval chain for conversational mode
1232
  def neo4j_retrieval_conversational(question: str):
1233
  structured_data = structured_retriever(question)
1234
  logging.debug(f"Structured data (Conversational): {structured_data}")
 
1236
  response = chat_model({"query": prompt})
1237
  return response, []
1238
 
1239
+ # Neo4j Retrieval chain for detailed mode
1240
  def neo4j_retrieval_details(question: str):
1241
  structured_data = structured_retriever(question)
1242
  logging.debug(f"Structured data (Details): {structured_data}")
 
1244
  response = chat_model({"query": prompt})
1245
  return response, extract_addresses(response)
1246
 
1247
+ # Update the generate_answer function to include Neo4j retrieval modes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248
  def generate_answer(message, choice, retrieval_mode):
1249
  logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
1250
 
 
1270
  else:
1271
  return "Invalid retrieval mode selected.", []
1272
 
1273
+ # Full Text query Generator
1274
+ def generate_full_text_query(input: str) -> str:
1275
+ full_text_query = ""
1276
+ words = [el for el in remove_lucene_chars(input).split() if el]
1277
+ for word in words[:-1]:
1278
+ full_text_query += f" {word}~2 AND"
1279
+ full_text_query += f" {words[-1]}~2"
1280
+ return full_text_query.strip()
1281
+
1282
+ # Rest of the code remains the same
1283
 
1284
  def bot(history, choice, tts_choice, retrieval_mode):
1285
  if not history:
 
1347
  for location_name in all_addresses:
1348
  geocode_result = gmaps.geocode(location_name)
1349
  if geocode_result:
1350
+ location = geocode_result[0]['geometry']['location']
1351
+ folium.Marker(
1352
+ [location['lat'], location['lng']],
1353
+ tooltip=f"{geocode_result[0]['formatted_address']}"
1354
+ ).add_to(m)
1355
 
1356
  map_html = m._repr_html_()
1357
  return map_html
 
1519
  logging.error(f"Error generating audio: {response.text}")
1520
  return None
1521
 
 
1522
  repo_id = "parler-tts/parler-tts-mini-expresso"
1523
 
1524
  parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
 
1847
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
1848
  audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1849
 
1850
+ # Api Integration to gradio call function
1851
 
1852
  # with gr.Column():
1853
  # weather_output = gr.HTML(value=fetch_local_weather())
 
1871
 
1872
 
1873
 
1874
+