Pijush2023 commited on
Commit
17d9bed
·
verified ·
1 Parent(s): 6d0b851

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +858 -24
app.py CHANGED
@@ -847,6 +847,857 @@
847
  # demo.queue()
848
  # demo.launch(share=True)
849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850
  import gradio as gr
851
  import requests
852
  import os
@@ -892,12 +1743,10 @@ from langchain_core.messages import AIMessage, HumanMessage
892
  from langchain_core.output_parsers import StrOutputParser
893
  from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
894
 
895
-
896
  # Set environment variables for CUDA
897
  os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
898
  os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
899
 
900
-
901
  hf_token = os.getenv("HF_TOKEN")
902
  if hf_token is None:
903
  print("Please set your Hugging Face token in the environment variables.")
@@ -906,10 +1755,8 @@ else:
906
 
907
  logging.basicConfig(level=logging.DEBUG)
908
 
909
-
910
  embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
911
 
912
-
913
  # Pinecone setup
914
  from pinecone import Pinecone
915
  pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
@@ -978,20 +1825,6 @@ graph = Neo4jGraph(
978
  password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
979
  )
980
 
981
- # Avoid pushing the graph documents to Neo4j every time
982
- # Only push the documents once and comment the code below after the initial push
983
- # dataset_name = "Pijush2023/birmindata07312024"
984
- # page_content_column = 'events_description'
985
- # loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
986
- # data = loader.load()
987
-
988
- # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
989
- # documents = text_splitter.split_documents(data)
990
-
991
- # llm_transformer = LLMGraphTransformer(llm=chat_model)
992
- # graph_documents = llm_transformer.convert_to_graph_documents(documents)
993
- # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
994
-
995
  class Entities(BaseModel):
996
  names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
997
 
@@ -1315,7 +2148,7 @@ def show_map_if_details(history, choice):
1315
  if choice in ["Details", "Conversational"]:
1316
  return gr.update(visible=True), update_map_with_response(history)
1317
  else:
1318
- return gr.update(visible(False), "")
1319
 
1320
  def generate_audio_elevenlabs(text):
1321
  XI_API_KEY = os.environ['ELEVENLABS_API']
@@ -1491,7 +2324,7 @@ def fetch_local_events():
1491
  api_key = os.environ['SERP_API']
1492
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
1493
  response = requests.get(url)
1494
- if response.status_code == 200:
1495
  events_results = response.json().get("events_results", [])
1496
  events_html = """
1497
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
@@ -1665,16 +2498,16 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1665
 
1666
  # Define the sequence of actions for the "Retriever" button
1667
  retriever_sequence = (
1668
- retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output],api_name="Ask_Retriever")
1669
- .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query")
1670
- .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output],api_name="generate_voice_response" )
1671
  .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
1672
  .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
1673
  )
1674
 
1675
  # Link the "Enter" key (submit event) to the same sequence of actions
1676
  chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
1677
- chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query").then(
1678
  fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
1679
  ).then(
1680
  fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
@@ -1701,3 +2534,4 @@ demo.launch(share=True)
1701
 
1702
 
1703
 
 
 
847
  # demo.queue()
848
  # demo.launch(share=True)
849
 
850
+ # import gradio as gr
851
+ # import requests
852
+ # import os
853
+ # import time
854
+ # import re
855
+ # import logging
856
+ # import tempfile
857
+ # import folium
858
+ # import concurrent.futures
859
+ # import torch
860
+ # from PIL import Image
861
+ # from datetime import datetime
862
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
863
+ # from googlemaps import Client as GoogleMapsClient
864
+ # from gtts import gTTS
865
+ # from diffusers import StableDiffusionPipeline
866
+ # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
867
+ # from langchain_pinecone import PineconeVectorStore
868
+ # from langchain.prompts import PromptTemplate
869
+ # from langchain.chains import RetrievalQA
870
+ # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
871
+ # from huggingface_hub import login
872
+ # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
873
+ # from parler_tts import ParlerTTSForConditionalGeneration
874
+ # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
875
+ # from scipy.io.wavfile import write as write_wav
876
+ # from pydub import AudioSegment
877
+ # from string import punctuation
878
+ # import librosa
879
+ # from pathlib import Path
880
+ # import torchaudio
881
+ # import numpy as np
882
+
883
+ # # Neo4j imports
884
+ # from langchain.chains import GraphCypherQAChain
885
+ # from langchain_community.graphs import Neo4jGraph
886
+ # from langchain_community.document_loaders import HuggingFaceDatasetLoader
887
+ # from langchain_text_splitters import CharacterTextSplitter
888
+ # from langchain_experimental.graph_transformers import LLMGraphTransformer
889
+ # from langchain_core.prompts import ChatPromptTemplate
890
+ # from langchain_core.pydantic_v1 import BaseModel, Field
891
+ # from langchain_core.messages import AIMessage, HumanMessage
892
+ # from langchain_core.output_parsers import StrOutputParser
893
+ # from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
894
+
895
+
896
+ # # Set environment variables for CUDA
897
+ # os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
898
+ # os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
899
+
900
+
901
+ # hf_token = os.getenv("HF_TOKEN")
902
+ # if hf_token is None:
903
+ # print("Please set your Hugging Face token in the environment variables.")
904
+ # else:
905
+ # login(token=hf_token)
906
+
907
+ # logging.basicConfig(level=logging.DEBUG)
908
+
909
+
910
+ # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
911
+
912
+
913
+ # # Pinecone setup
914
+ # from pinecone import Pinecone
915
+ # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
916
+
917
+ # index_name = "radardata07242024"
918
+ # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
919
+ # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
920
+
921
+ # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
922
+
923
+ # conversational_memory = ConversationBufferWindowMemory(
924
+ # memory_key='chat_history',
925
+ # k=10,
926
+ # return_messages=True
927
+ # )
928
+
929
+ # # Prompt templates
930
+ # def get_current_date():
931
+ # return datetime.now().strftime("%B %d, %Y")
932
+
933
+ # current_date = get_current_date()
934
+
935
+ # template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places, and activities in Birmingham that can enhance your experience.
936
+ # If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
937
+ # Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
938
+ # Address: >>, Birmingham, AL
939
+ # Time: >>__
940
+ # Date: >>__
941
+ # Description: >>__
942
+ # Address: >>, Birmingham, AL
943
+ # Time: >>__
944
+ # Date: >>__
945
+ # Description: >>__
946
+ # Address: >>, Birmingham, AL
947
+ # Time: >>__
948
+ # Date: >>__
949
+ # Description: >>__
950
+ # Address: >>, Birmingham, AL
951
+ # Time: >>__
952
+ # Date: >>__
953
+ # Description: >>__
954
+ # Address: >>, Birmingham, AL
955
+ # Time: >>__
956
+ # Date: >>__
957
+ # Description: >>__
958
+ # If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
959
+ # It was my pleasure!
960
+ # {{context}}
961
+ # Question: {{question}}
962
+ # Helpful Answer:"""
963
+
964
+ # template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
965
+ # In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
966
+ # "It was my pleasure!"
967
+ # {{context}}
968
+ # Question: {{question}}
969
+ # Helpful Answer:"""
970
+
971
+ # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
972
+ # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
973
+
974
+ # # Neo4j setup
975
+ # graph = Neo4jGraph(
976
+ # url="neo4j+s://98f45cc0.databases.neo4j.io",
977
+ # username="neo4j",
978
+ # password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
979
+ # )
980
+
981
+ # # Avoid pushing the graph documents to Neo4j every time
982
+ # # Only push the documents once and comment the code below after the initial push
983
+ # # dataset_name = "Pijush2023/birmindata07312024"
984
+ # # page_content_column = 'events_description'
985
+ # # loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
986
+ # # data = loader.load()
987
+
988
+ # # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
989
+ # # documents = text_splitter.split_documents(data)
990
+
991
+ # # llm_transformer = LLMGraphTransformer(llm=chat_model)
992
+ # # graph_documents = llm_transformer.convert_to_graph_documents(documents)
993
+ # # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
994
+
995
+ # class Entities(BaseModel):
996
+ # names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
997
+
998
+ # entity_prompt = ChatPromptTemplate.from_messages([
999
+ # ("system", "You are extracting organization and person entities from the text."),
1000
+ # ("human", "Use the given format to extract information from the following input: {question}"),
1001
+ # ])
1002
+
1003
+ # entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
1004
+
1005
+ # def remove_lucene_chars(input: str) -> str:
1006
+ # return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
1007
+ # "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
1008
+ # "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
1009
+ # ";": r"\;", " ": r"\ "}))
1010
+
1011
+ # def generate_full_text_query(input: str) -> str:
1012
+ # full_text_query = ""
1013
+ # words = [el for el in remove_lucene_chars(input).split() if el]
1014
+ # for word in words[:-1]:
1015
+ # full_text_query += f" {word}~2 AND"
1016
+ # full_text_query += f" {words[-1]}~2"
1017
+ # return full_text_query.strip()
1018
+
1019
+ # def structured_retriever(question: str) -> str:
1020
+ # result = ""
1021
+ # entities = entity_chain.invoke({"question": question})
1022
+ # for entity in entities.names:
1023
+ # response = graph.query(
1024
+ # """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
1025
+ # YIELD node,score
1026
+ # CALL {
1027
+ # WITH node
1028
+ # MATCH (node)-[r:!MENTIONS]->(neighbor)
1029
+ # RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
1030
+ # UNION ALL
1031
+ # WITH node
1032
+ # MATCH (node)<-[r:!MENTIONS]-(neighbor)
1033
+ # RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
1034
+ # }
1035
+ # RETURN output LIMIT 50
1036
+ # """,
1037
+ # {"query": generate_full_text_query(entity)},
1038
+ # )
1039
+ # result += "\n".join([el['output'] for el in response])
1040
+ # return result
1041
+
1042
+ # def retriever_neo4j(question: str):
1043
+ # structured_data = structured_retriever(question)
1044
+ # logging.debug(f"Structured data: {structured_data}")
1045
+ # return structured_data
1046
+
1047
+ # _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
1048
+ # in its original language.
1049
+ # Chat History:
1050
+ # {chat_history}
1051
+ # Follow Up Input: {question}
1052
+ # Standalone question:"""
1053
+
1054
+ # CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
1055
+
1056
+ # def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
1057
+ # buffer = []
1058
+ # for human, ai in chat_history:
1059
+ # buffer.append(HumanMessage(content=human))
1060
+ # buffer.append(AIMessage(content=ai))
1061
+ # return buffer
1062
+
1063
+ # _search_query = RunnableBranch(
1064
+ # (
1065
+ # RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
1066
+ # run_name="HasChatHistoryCheck"
1067
+ # ),
1068
+ # RunnablePassthrough.assign(
1069
+ # chat_history=lambda x: _format_chat_history(x["chat_history"])
1070
+ # )
1071
+ # | CONDENSE_QUESTION_PROMPT
1072
+ # | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
1073
+ # | StrOutputParser(),
1074
+ # ),
1075
+ # RunnableLambda(lambda x : x["question"]),
1076
+ # )
1077
+
1078
+ # template = """Answer the question based only on the following context:
1079
+ # {context}
1080
+ # Question: {question}
1081
+ # Use natural language and be concise.
1082
+ # Answer:"""
1083
+
1084
+ # qa_prompt = ChatPromptTemplate.from_template(template)
1085
+
1086
+ # chain_neo4j = (
1087
+ # RunnableParallel(
1088
+ # {
1089
+ # "context": _search_query | retriever_neo4j,
1090
+ # "question": RunnablePassthrough(),
1091
+ # }
1092
+ # )
1093
+ # | qa_prompt
1094
+ # | chat_model
1095
+ # | StrOutputParser()
1096
+ # )
1097
+
1098
+ # # Define a function to select between Pinecone and Neo4j
1099
+ # def generate_answer(message, choice, retrieval_mode):
1100
+ # logging.debug(f"generate_answer called with choice: {choice} and retrieval_mode: {retrieval_mode}")
1101
+
1102
+ # prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
1103
+
1104
+ # if retrieval_mode == "Vector":
1105
+ # qa_chain = RetrievalQA.from_chain_type(
1106
+ # llm=chat_model,
1107
+ # chain_type="stuff",
1108
+ # retriever=retriever,
1109
+ # chain_type_kwargs={"prompt": prompt_template}
1110
+ # )
1111
+ # response = qa_chain({"query": message})
1112
+ # logging.debug(f"Vector response: {response}")
1113
+ # return response['result'], extract_addresses(response['result'])
1114
+ # elif retrieval_mode == "Knowledge-Graph":
1115
+ # response = chain_neo4j.invoke({"question": message})
1116
+ # logging.debug(f"Knowledge-Graph response: {response}")
1117
+ # return response, extract_addresses(response)
1118
+ # else:
1119
+ # return "Invalid retrieval mode selected.", []
1120
+
1121
+ # def bot(history, choice, tts_choice, retrieval_mode):
1122
+ # if not history:
1123
+ # return history
1124
+
1125
+ # response, addresses = generate_answer(history[-1][0], choice, retrieval_mode)
1126
+ # history[-1][1] = ""
1127
+
1128
+ # with concurrent.futures.ThreadPoolExecutor() as executor:
1129
+ # if tts_choice == "Alpha":
1130
+ # audio_future = executor.submit(generate_audio_elevenlabs, response)
1131
+ # elif tts_choice == "Beta":
1132
+ # audio_future = executor.submit(generate_audio_parler_tts, response)
1133
+ # elif tts_choice == "Gamma":
1134
+ # audio_future = executor.submit(generate_audio_mars5, response)
1135
+
1136
+ # for character in response:
1137
+ # history[-1][1] += character
1138
+ # time.sleep(0.05)
1139
+ # yield history, None
1140
+
1141
+ # audio_path = audio_future.result()
1142
+ # yield history, audio_path
1143
+
1144
+ # history.append([response, None]) # Ensure the response is added in the correct format
1145
+
1146
+ # def add_message(history, message):
1147
+ # history.append((message, None))
1148
+ # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
1149
+
1150
+ # def print_like_dislike(x: gr.LikeData):
1151
+ # print(x.index, x.value, x.liked)
1152
+
1153
+ # def extract_addresses(response):
1154
+ # if not isinstance(response, str):
1155
+ # response = str(response)
1156
+ # address_patterns = [
1157
+ # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
1158
+ # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
1159
+ # r'([A-Z].*,\sAL\s\d{5})',
1160
+ # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
1161
+ # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
1162
+ # r'(\d{2}.*\sStreets)',
1163
+ # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
1164
+ # r'([a-zA-Z]\s Birmingham)',
1165
+ # r'([a-zA-Z].*,\sBirmingham,\sAL)',
1166
+ # r'(^Birmingham,AL$)'
1167
+ # ]
1168
+ # addresses = []
1169
+ # for pattern in address_patterns:
1170
+ # addresses.extend(re.findall(pattern, response))
1171
+ # return addresses
1172
+
1173
+ # all_addresses = []
1174
+
1175
+ # def generate_map(location_names):
1176
+ # global all_addresses
1177
+ # all_addresses.extend(location_names)
1178
+
1179
+ # api_key = os.environ['GOOGLEMAPS_API_KEY']
1180
+ # gmaps = GoogleMapsClient(key=api_key)
1181
+
1182
+ # m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
1183
+
1184
+ # for location_name in all_addresses:
1185
+ # geocode_result = gmaps.geocode(location_name)
1186
+ # if geocode_result:
1187
+ # location = geocode_result[0]['geometry']['location']
1188
+ # folium.Marker(
1189
+ # [location['lat'], location['lng']],
1190
+ # tooltip=f"{geocode_result[0]['formatted_address']}"
1191
+ # ).add_to(m)
1192
+
1193
+ # map_html = m._repr_html_()
1194
+ # return map_html
1195
+
1196
+ # def fetch_local_news():
1197
+ # api_key = os.environ['SERP_API']
1198
+ # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
1199
+ # response = requests.get(url)
1200
+ # if response.status_code == 200:
1201
+ # results = response.json().get("news_results", [])
1202
+ # news_html = """
1203
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
1204
+ # <style>
1205
+ # .news-item {
1206
+ # font-family: 'Verdana', sans-serif;
1207
+ # color: #333;
1208
+ # background-color: #f0f8ff;
1209
+ # margin-bottom: 15px;
1210
+ # padding: 10px;
1211
+ # border-radius: 5px;
1212
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
1213
+ # font-weight: bold;
1214
+ # }
1215
+ # .news-item:hover {
1216
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
1217
+ # background-color: #e6f7ff;
1218
+ # }
1219
+ # .news-item a {
1220
+ # color: #1E90FF;
1221
+ # text-decoration: none;
1222
+ # font-weight: bold;
1223
+ # }
1224
+ # .news-item a:hover {
1225
+ # text-decoration: underline;
1226
+ # }
1227
+ # .news-preview {
1228
+ # position: absolute;
1229
+ # display: none;
1230
+ # border: 1px solid #ccc;
1231
+ # border-radius: 5px;
1232
+ # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
1233
+ # background-color: white;
1234
+ # z-index: 1000;
1235
+ # max-width: 300px;
1236
+ # padding: 10px;
1237
+ # font-family: 'Verdana', sans-serif;
1238
+ # color: #333;
1239
+ # }
1240
+ # </style>
1241
+ # <script>
1242
+ # function showPreview(event, previewContent) {
1243
+ # var previewBox = document.getElementById('news-preview');
1244
+ # previewBox.innerHTML = previewContent;
1245
+ # previewBox.style.left = event.pageX + 'px';
1246
+ # previewBox.style.top = event.pageY + 'px';
1247
+ # previewBox.style.display = 'block';
1248
+ # }
1249
+ # function hidePreview() {
1250
+ # var previewBox = document.getElementById('news-preview');
1251
+ # previewBox.style.display = 'none';
1252
+ # }
1253
+ # </script>
1254
+ # <div id="news-preview" class="news-preview"></div>
1255
+ # """
1256
+ # for index, result in enumerate(results[:7]):
1257
+ # title = result.get("title", "No title")
1258
+ # link = result.get("link", "#")
1259
+ # snippet = result.get("snippet", "")
1260
+ # news_html += f"""
1261
+ # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
1262
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
1263
+ # <p>{snippet}</p>
1264
+ # </div>
1265
+ # """
1266
+ # return news_html
1267
+ # else:
1268
+ # return "<p>Failed to fetch local news</p>"
1269
+
1270
+ # import numpy as np
1271
+ # import torch
1272
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
1273
+
1274
+ # model_id = 'openai/whisper-large-v3'
1275
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
1276
+ # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
1277
+ # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
1278
+ # processor = AutoProcessor.from_pretrained(model_id)
1279
+
1280
+ # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
1281
+
1282
+ # base_audio_drive = "/data/audio"
1283
+
1284
+ # def transcribe_function(stream, new_chunk):
1285
+ # try:
1286
+ # sr, y = new_chunk[0], new_chunk[1]
1287
+ # except TypeError:
1288
+ # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
1289
+ # return stream, "", None
1290
+
1291
+ # y = y.astype(np.float32) / np.max(np.abs(y))
1292
+
1293
+ # if stream is not None:
1294
+ # stream = np.concatenate([stream, y])
1295
+ # else:
1296
+ # stream = y
1297
+
1298
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
1299
+
1300
+ # full_text = result.get("text","")
1301
+
1302
+ # return stream, full_text, result
1303
+
1304
+ # def update_map_with_response(history):
1305
+ # if not history:
1306
+ # return ""
1307
+ # response = history[-1][1]
1308
+ # addresses = extract_addresses(response)
1309
+ # return generate_map(addresses)
1310
+
1311
+ # def clear_textbox():
1312
+ # return ""
1313
+
1314
+ # def show_map_if_details(history, choice):
1315
+ # if choice in ["Details", "Conversational"]:
1316
+ # return gr.update(visible=True), update_map_with_response(history)
1317
+ # else:
1318
+ # return gr.update(visible(False), "")
1319
+
1320
+ # def generate_audio_elevenlabs(text):
1321
+ # XI_API_KEY = os.environ['ELEVENLABS_API']
1322
+ # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
1323
+ # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
1324
+ # headers = {
1325
+ # "Accept": "application/json",
1326
+ # "xi-api-key": XI_API_KEY
1327
+ # }
1328
+ # data = {
1329
+ # "text": str(text),
1330
+ # "model_id": "eleven_multilingual_v2",
1331
+ # "voice_settings": {
1332
+ # "stability": 1.0,
1333
+ # "similarity_boost": 0.0,
1334
+ # "style": 0.60,
1335
+ # "use_speaker_boost": False
1336
+ # }
1337
+ # }
1338
+ # response = requests.post(tts_url, headers=headers, json=data, stream=True)
1339
+ # if response.ok:
1340
+ # audio_segments = []
1341
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
1342
+ # for chunk in response.iter_content(chunk_size=1024):
1343
+ # if chunk:
1344
+ # f.write(chunk)
1345
+ # audio_segments.append(chunk)
1346
+ # temp_audio_path = f.name
1347
+
1348
+ # # Combine all audio chunks into a single file
1349
+ # combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
1350
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
1351
+ # combined_audio.export(combined_audio_path, format="mp3")
1352
+
1353
+ # logging.debug(f"Audio saved to {combined_audio_path}")
1354
+ # return combined_audio_path
1355
+ # else:
1356
+ # logging.error(f"Error generating audio: {response.text}")
1357
+ # return None
1358
+
1359
+
1360
+ # repo_id = "parler-tts/parler-tts-mini-expresso"
1361
+
1362
+ # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
1363
+ # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
1364
+ # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
1365
+
1366
+ # SAMPLE_RATE = parler_feature_extractor.sampling_rate
1367
+ # SEED = 42
1368
+
1369
+ # def preprocess(text):
1370
+ # number_normalizer = EnglishNumberNormalizer()
1371
+ # text = number_normalizer(text).strip()
1372
+ # if text[-1] not in punctuation:
1373
+ # text = f"{text}."
1374
+
1375
+ # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
1376
+
1377
+ # def separate_abb(chunk):
1378
+ # chunk = chunk.replace(".", "")
1379
+ # return " ".join(chunk)
1380
+
1381
+ # abbreviations = re.findall(abbreviations_pattern, text)
1382
+ # for abv in abbreviations:
1383
+ # if abv in text:
1384
+ # text is text.replace(abv, separate_abb(abv))
1385
+ # return text
1386
+
1387
+ # def chunk_text(text, max_length=250):
1388
+ # words = text.split()
1389
+ # chunks = []
1390
+ # current_chunk = []
1391
+ # current_length = 0
1392
+
1393
+ # for word in words:
1394
+ # if current_length + len(word) + 1 <= max_length:
1395
+ # current_chunk.append(word)
1396
+ # current_length += len(word) + 1
1397
+ # else:
1398
+ # chunks.append(' '.join(current_chunk))
1399
+ # current_chunk = [word]
1400
+ # current_length = len(word) + 1
1401
+
1402
+ # if current_chunk:
1403
+ # chunks.append(' '.join(current_chunk))
1404
+
1405
+ # return chunks
1406
+
1407
+ # def generate_audio_parler_tts(text):
1408
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
1409
+ # chunks = chunk_text(preprocess(text))
1410
+ # audio_segments = []
1411
+
1412
+ # for chunk in chunks:
1413
+ # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
1414
+ # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
1415
+
1416
+ # set_seed(SEED)
1417
+ # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
1418
+ # audio_arr = generation.cpu().numpy().squeeze()
1419
+
1420
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
1421
+ # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
1422
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
1423
+
1424
+ # combined_audio = sum(audio_segments)
1425
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
1426
+ # combined_audio.export(combined_audio_path, format="wav")
1427
+
1428
+ # logging.debug(f"Audio saved to {combined_audio_path}")
1429
+ # return combined_audio_path
1430
+
1431
+ # # Load the MARS5 model
1432
+ # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
1433
+
1434
+ # def generate_audio_mars5(text):
1435
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
1436
+ # kwargs_dict = {
1437
+ # 'temperature': 0.2,
1438
+ # 'top_k': -1,
1439
+ # 'top_p': 0.2,
1440
+ # 'typical_p': 1.0,
1441
+ # 'freq_penalty': 2.6,
1442
+ # 'presence_penalty': 0.4,
1443
+ # 'rep_penalty_window': 100,
1444
+ # 'max_prompt_phones': 360,
1445
+ # 'deep_clone': True,
1446
+ # 'nar_guidance_w': 3
1447
+ # }
1448
+
1449
+ # chunks = chunk_text(preprocess(text))
1450
+ # audio_segments = []
1451
+
1452
+ # for chunk in chunks:
1453
+ # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
1454
+ # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
1455
+ # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
1456
+
1457
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
1458
+ # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
1459
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
1460
+
1461
+ # combined_audio = sum(audio_segments)
1462
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
1463
+ # combined_audio.export(combined_audio_path, format="wav")
1464
+
1465
+ # logging.debug(f"Audio saved to {combined_audio_path}")
1466
+ # return combined_audio_path
1467
+
1468
+ # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
1469
+ # pipe.to(device)
1470
+
1471
+ # def generate_image(prompt):
1472
+ # with torch.cuda.amp.autocast():
1473
+ # image = pipe(
1474
+ # prompt,
1475
+ # num_inference_steps=28,
1476
+ # guidance_scale=3.0,
1477
+ # ).images[0]
1478
+ # return image
1479
+
1480
+ # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
1481
+ # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
1482
+ # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
1483
+
1484
+ # def update_images():
1485
+ # image_1 = generate_image(hardcoded_prompt_1)
1486
+ # image_2 = generate_image(hardcoded_prompt_2)
1487
+ # image_3 = generate_image(hardcoded_prompt_3)
1488
+ # return image_1, image_2, image_3
1489
+
1490
+ # def fetch_local_events():
1491
+ # api_key = os.environ['SERP_API']
1492
+ # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
1493
+ # response = requests.get(url)
1494
+ # if response.status_code == 200:
1495
+ # events_results = response.json().get("events_results", [])
1496
+ # events_html = """
1497
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
1498
+ # <style>
1499
+ # table {
1500
+ # font-family: 'Verdana', sans-serif;
1501
+ # color: #333;
1502
+ # border-collapse: collapse;
1503
+ # width: 100%;
1504
+ # }
1505
+ # th, td {
1506
+ # border: 1px solid #fff !important;
1507
+ # padding: 8px;
1508
+ # }
1509
+ # th {
1510
+ # background-color: #f2f2f2;
1511
+ # color: #333;
1512
+ # text-align: left;
1513
+ # }
1514
+ # tr:hover {
1515
+ # background-color: #f5f5f5;
1516
+ # }
1517
+ # .event-link {
1518
+ # color: #1E90FF;
1519
+ # text-decoration: none;
1520
+ # }
1521
+ # .event-link:hover {
1522
+ # text-decoration: underline;
1523
+ # }
1524
+ # </style>
1525
+ # <table>
1526
+ # <tr>
1527
+ # <th>Title</th>
1528
+ # <th>Date and Time</th>
1529
+ # <th>Location</th>
1530
+ # </tr>
1531
+ # """
1532
+ # for event in events_results:
1533
+ # title = event.get("title", "No title")
1534
+ # date_info = event.get("date", {})
1535
+ # date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
1536
+ # location = event.get("address", "No location")
1537
+ # if isinstance(location, list):
1538
+ # location = " ".join(location)
1539
+ # location = location.replace("[", "").replace("]", "")
1540
+ # link = event.get("link", "#")
1541
+ # events_html += f"""
1542
+ # <tr>
1543
+ # <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
1544
+ # <td>{date}</td>
1545
+ # <td>{location}</td>
1546
+ # </tr>
1547
+ # """
1548
+ # events_html += "</table>"
1549
+ # return events_html
1550
+ # else:
1551
+ # return "<p>Failed to fetch local events</p>"
1552
+
1553
+ # def get_weather_icon(condition):
1554
+ # condition_map = {
1555
+ # "Clear": "c01d",
1556
+ # "Partly Cloudy": "c02d",
1557
+ # "Cloudy": "c03d",
1558
+ # "Overcast": "c04d",
1559
+ # "Mist": "a01d",
1560
+ # "Patchy rain possible": "r01d",
1561
+ # "Light rain": "r02d",
1562
+ # "Moderate rain": "r03d",
1563
+ # "Heavy rain": "r04d",
1564
+ # "Snow": "s01d",
1565
+ # "Thunderstorm": "t01d",
1566
+ # "Fog": "a05d",
1567
+ # }
1568
+ # return condition_map.get(condition, "c04d")
1569
+
1570
+ # def fetch_local_weather():
1571
+ # try:
1572
+ # api_key = os.environ['WEATHER_API']
1573
+ # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
1574
+ # response = requests.get(url)
1575
+ # response.raise_for_status()
1576
+ # jsonData = response.json()
1577
+
1578
+ # current_conditions = jsonData.get("currentConditions", {})
1579
+ # temp_celsius = current_conditions.get("temp", "N/A")
1580
+
1581
+ # if temp_celsius != "N/A":
1582
+ # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
1583
+ # else:
1584
+ # temp_fahrenheit = "N/A"
1585
+
1586
+ # condition = current_conditions.get("conditions", "N/A")
1587
+ # humidity = current_conditions.get("humidity", "N/A")
1588
+
1589
+ # weather_html = f"""
1590
+ # <div class="weather-theme">
1591
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
1592
+ # <div class="weather-content">
1593
+ # <div class="weather-icon">
1594
+ # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
1595
+ # </div>
1596
+ # <div class="weather-details">
1597
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
1598
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
1599
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
1600
+ # </div>
1601
+ # </div>
1602
+ # </div>
1603
+ # <style>
1604
+ # .weather-theme {{
1605
+ # animation: backgroundAnimation 10s infinite alternate;
1606
+ # border-radius: 10px;
1607
+ # padding: 10px;
1608
+ # margin-bottom: 15px;
1609
+ # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
1610
+ # background-size: 400% 400%;
1611
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
1612
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
1613
+ # }}
1614
+ # .weather-theme:hover {{
1615
+ # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
1616
+ # background-position: 100% 100%;
1617
+ # }}
1618
+ # @keyframes backgroundAnimation {{
1619
+ # 0% {{ background-position: 0% 50%; }}
1620
+ # 100% {{ background-position: 100% 50%; }}
1621
+ # }}
1622
+ # .weather-content {{
1623
+ # display: flex;
1624
+ # align-items: center;
1625
+ # }}
1626
+ # .weather-icon {{
1627
+ # flex: 1;
1628
+ # }}
1629
+ # .weather-details {{
1630
+ # flex 3;
1631
+ # }}
1632
+ # </style>
1633
+ # """
1634
+ # return weather_html
1635
+ # except requests.exceptions.RequestException as e:
1636
+ # return f"<p>Failed to fetch local weather: {e}</p>"
1637
+
1638
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1639
+ # with gr.Row():
1640
+ # with gr.Column():
1641
+ # state = gr.State()
1642
+
1643
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
1644
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
1645
+ # retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["Vector", "Knowledge-Graph"], value="Vector")
1646
+
1647
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1648
+
1649
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt,click Retriever Only")
1650
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1651
+ # retriever_button = gr.Button("Retriever")
1652
+
1653
+ # clear_button = gr.Button("Clear")
1654
+ # clear_button.click(lambda:[None,None] ,outputs=[chat_input, state])
1655
+
1656
+ # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
1657
+ # location_output = gr.HTML()
1658
+
1659
+ # # Define a single audio component
1660
+ # audio_output = gr.Audio(interactive=False, autoplay=True)
1661
+
1662
+ # def stop_audio():
1663
+ # audio_output.stop()
1664
+ # return None
1665
+
1666
+ # # Define the sequence of actions for the "Retriever" button
1667
+ # retriever_sequence = (
1668
+ # retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output],api_name="Ask_Retriever")
1669
+ # .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query")
1670
+ # .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output],api_name="generate_voice_response" )
1671
+ # .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
1672
+ # .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
1673
+ # )
1674
+
1675
+ # # Link the "Enter" key (submit event) to the same sequence of actions
1676
+ # chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
1677
+ # chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input],api_name="voice_query").then(
1678
+ # fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
1679
+ # ).then(
1680
+ # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
1681
+ # ).then(
1682
+ # fn=clear_textbox, inputs=[], outputs=[chat_input]
1683
+ # )
1684
+
1685
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
1686
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
1687
+
1688
+ # with gr.Column():
1689
+ # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
1690
+ # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
1691
+ # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
1692
+
1693
+ # refresh_button = gr.Button("Refresh Images")
1694
+ # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3], api_name="update_image")
1695
+
1696
+ # demo.queue()
1697
+ # demo.launch(share=True)
1698
+
1699
+
1700
+
1701
  import gradio as gr
1702
  import requests
1703
  import os
 
1743
  from langchain_core.output_parsers import StrOutputParser
1744
  from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
1745
 
 
1746
  # Set environment variables for CUDA
1747
  os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
1748
  os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
1749
 
 
1750
  hf_token = os.getenv("HF_TOKEN")
1751
  if hf_token is None:
1752
  print("Please set your Hugging Face token in the environment variables.")
 
1755
 
1756
  logging.basicConfig(level=logging.DEBUG)
1757
 
 
1758
  embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
1759
 
 
1760
  # Pinecone setup
1761
  from pinecone import Pinecone
1762
  pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
 
1825
  password="B_sZbapCTZoQDWj1JrhwqElsNa-jm5Zq1m_mAnyPYog"
1826
  )
1827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828
  class Entities(BaseModel):
1829
  names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
1830
 
 
2148
  if choice in ["Details", "Conversational"]:
2149
  return gr.update(visible=True), update_map_with_response(history)
2150
  else:
2151
+ return gr.update(visible=False), ""
2152
 
2153
  def generate_audio_elevenlabs(text):
2154
  XI_API_KEY = os.environ['ELEVENLABS_API']
 
2324
  api_key = os.environ['SERP_API']
2325
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
2326
  response = requests.get(url)
2327
+ if response.status_code == 200):
2328
  events_results = response.json().get("events_results", [])
2329
  events_html = """
2330
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
 
2498
 
2499
  # Define the sequence of actions for the "Retriever" button
2500
  retriever_sequence = (
2501
+ retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
2502
+ .then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
2503
+ .then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response")
2504
  .then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
2505
  .then(fn=clear_textbox, inputs=[], outputs=[chat_input])
2506
  )
2507
 
2508
  # Link the "Enter" key (submit event) to the same sequence of actions
2509
  chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
2510
+ chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
2511
  fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode], outputs=[chatbot, audio_output], api_name="generate_voice_response"
2512
  ).then(
2513
  fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
 
2534
 
2535
 
2536
 
2537
+