File size: 16,065 Bytes
e5a1544 f3de933 e5a1544 473b2d5 e5a1544 5f27df7 f3de933 5f27df7 f3de933 4a53aae 2553966 b37a8e6 f3de933 e5a1544 f3de933 e5a1544 f3de933 b37a8e6 473b2d5 f3de933 b37a8e6 f3de933 107dab2 473b2d5 f3de933 107dab2 473b2d5 107dab2 f3de933 107dab2 473b2d5 f3de933 107dab2 f3de933 b37a8e6 e5a1544 f3de933 b37a8e6 f3de933 b37a8e6 f3de933 107dab2 f3de933 473b2d5 f3de933 473b2d5 5f27df7 f3de933 107dab2 f3de933 107dab2 f3de933 107dab2 f3de933 2553966 473b2d5 2553966 f3de933 2553966 f3de933 4a53aae f3de933 b37a8e6 f3de933 4a53aae f3de933 b37a8e6 473b2d5 f3de933 e5a1544 f3de933 e5a1544 5148899 dfc63b4 5148899 d33634b 5148899 565e309 5148899 dfc63b4 d33634b 5148899 dfc63b4 d33634b dfc63b4 5148899 e5a1544 f3de933 e5a1544 f3de933 f6a647b e5a1544 5148899 f3de933 473b2d5 f6a647b 5148899 f3de933 4a53aae 5148899 f3de933 4a53aae 5148899 473b2d5 f3de933 f6a647b 5148899 473b2d5 5148899 f3de933 5148899 f3de933 473b2d5 565e309 5148899 e5a1544 5148899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
from transformers import AutoFeatureExtractor, AutoModel
# -----------------------------
# Configuration
# -----------------------------
SKIP_RATE = 1 # For image processing, always run the analysis
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DESIRED_SIZE = (640, 480)
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
objects_cache = {"boxes": None, "text": "Initializing...", "object_list_text": "", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose and Face Detection
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection using Faster R-CNN
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval().to(device)
obj_transform = transforms.Compose([transforms.ToTensor()])
# Initialize the FER emotion detector (using the FER package)
emotion_detector = FER(mtcnn=True)
# Retrieve object categories from model weights metadata
object_categories = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.meta["categories"]
# -----------------------------
# Facial Recognition Model (DINO-ViT)
# -----------------------------
facial_recognition_extractor = AutoFeatureExtractor.from_pretrained("facebook/dino-vitb16")
facial_recognition_model = AutoModel.from_pretrained("facebook/dino-vitb16")
facial_recognition_model.to(device)
facial_recognition_model.eval()
# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
# Draw connector lines using MediaPipe's POSE_CONNECTIONS
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
if start_idx < len(landmarks) and end_idx < len(landmarks):
start_point = landmarks[start_idx]
end_point = landmarks[end_idx]
cv2.line(raw_frame, start_point, end_point, (50, 205, 50), 2)
# Draw landmark points in lime green (BGR: (50,205,50))
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (50, 205, 50), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb_small)
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
# Scale landmarks back to the original image size
x = int(lm.x * small_w * (w / small_w))
y = int(lm.y * small_h * (h / small_h))
landmarks.append((x, y))
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
# Use the FER package (exactly as in your provided code)
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb_small)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_objects_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb_small)
img_tensor = obj_transform(image_pil).to(device)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
boxes = []
object_list = []
for box, score, label in zip(detections["boxes"], detections["scores"], detections["labels"]):
if score > threshold:
boxes.append(tuple(box.int().cpu().numpy()))
label_idx = int(label)
label_name = object_categories[label_idx] if label_idx < len(object_categories) else "Unknown"
object_list.append(f"{label_name} ({score:.2f})")
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
object_list_text = " | ".join(object_list) if object_list else "None"
return boxes, text, object_list_text
def compute_faces_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
boxes = []
if face_results.detections:
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * small_w)
y = int(bbox.ymin * small_h)
box_w = int(bbox.width * small_w)
box_h = int(bbox.height * small_h)
boxes.append((x, y, x + box_w, y + box_h))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
def compute_facial_recognition_vector(image):
"""
Detects a face using MediaPipe, crops it, and computes its embedding vector
using facebook/dino-vitb16. The raw vector is returned as a string.
"""
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
if face_results.detections:
detection = face_results.detections[0]
bbox = detection.location_data.relative_bounding_box
h, w, _ = frame_rgb_small.shape
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
face_crop = frame_rgb_small[y:y+box_h, x:x+box_w]
face_image = Image.fromarray(face_crop)
inputs = facial_recognition_extractor(face_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = facial_recognition_model(**inputs)
# Mean pooling of the last hidden state to obtain a vector representation
vector = outputs.last_hidden_state.mean(dim=1).squeeze()
vector_np = vector.cpu().numpy()
# Format vector as a string with limited decimal places
vector_str = np.array2string(vector_np, precision=2, separator=',')
return face_crop, vector_str
else:
return np.array(image), "No face detected"
# -----------------------------
# Main Analysis Functions for Single Image
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image)
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"<div style='color: lime !important;'>Posture Analysis: {posture_cache['text']}</div>"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
return current_frame, f"<div style='color: lime !important;'>Emotion Analysis: {emotion_cache['text']}</div>"
def analyze_objects_current(image):
global objects_cache
objects_cache["counter"] += 1
current_frame = np.array(image)
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
boxes, text, object_list_text = compute_objects_overlay(image)
objects_cache["boxes"] = boxes
objects_cache["text"] = text
objects_cache["object_list_text"] = object_list_text
output = current_frame.copy()
if objects_cache["boxes"]:
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
combined_text = f"Object Detection: {objects_cache['text']}<br>Details: {objects_cache['object_list_text']}"
return output, f"<div style='color: lime !important;'>{combined_text}</div>"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"<div style='color: lime !important;'>Face Detection: {faces_cache['text']}</div>"
def analyze_facial_recognition(image):
# Compute and return the facial vector (and the cropped face)
face_crop, vector_str = compute_facial_recognition_vector(image)
return face_crop, f"<div style='color: lime !important;'>Facial Vector: {vector_str}</div>"
def analyze_all(image):
current_frame = np.array(image).copy()
# Posture Analysis
landmarks, posture_text = compute_posture_overlay(image)
if landmarks:
current_frame = draw_posture_overlay(current_frame, landmarks)
# Emotion Analysis
emotion_text = compute_emotion_overlay(image)
# Object Detection
boxes_obj, objects_text, object_list_text = compute_objects_overlay(image)
if boxes_obj:
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
# Face Detection
boxes_face, faces_text = compute_faces_overlay(image)
if boxes_face:
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
# Combined Analysis Text
combined_text = (
f"<b>Posture Analysis:</b> {posture_text}<br>"
f"<b>Emotion Analysis:</b> {emotion_text}<br>"
f"<b>Object Detection:</b> {objects_text}<br>"
f"<b>Detected Objects:</b> {object_list_text}<br>"
f"<b>Face Detection:</b> {faces_text}"
)
if object_list_text and object_list_text != "None":
description_text = f"Image Description: The scene features {object_list_text}."
else:
description_text = "Image Description: No prominent objects detected."
combined_text += f"<br><br><div style='border:1px solid lime; padding:10px; box-shadow: 0 0 10px lime;'><b>{description_text}</b></div>"
combined_text_html = f"<div style='color: lime !important;'>{combined_text}</div>"
return current_frame, combined_text_html
# -----------------------------
# Custom CSS (High-Tech Neon Theme)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
font-family: 'Orbitron', sans-serif;
color: #32CD32;
}
.gradio-container {
background: linear-gradient(135deg, #1a1a1a, #333333);
border: 2px solid #32CD32;
box-shadow: 0 0 15px #32CD32;
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title, .gradio-description, .tab-item, .tab-item * {
color: #32CD32 !important;
text-shadow: 0 0 10px #32CD32;
}
input, button, .output {
border: 1px solid #32CD32;
box-shadow: 0 0 8px #32CD32;
color: #32CD32;
}
"""
# -----------------------------
# Create Individual Interfaces for Image Processing
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
title="Posture",
description="Detects your posture using MediaPipe with connector lines.",
live=False
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
title="Emotion",
description="Detects facial emotions using FER.",
live=False
)
objects_interface = gr.Interface(
fn=analyze_objects_current,
inputs=gr.Image(label="Upload an Image for Object Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
title="Objects",
description="Detects objects using a pretrained Faster R-CNN.",
live=False
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(label="Upload an Image for Face Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
title="Faces",
description="Detects faces using MediaPipe.",
live=False
)
facial_recognition_interface = gr.Interface(
fn=analyze_facial_recognition,
inputs=gr.Image(label="Upload a Face Image for Facial Recognition"),
outputs=[gr.Image(type="numpy", label="Cropped Face"), gr.HTML(label="Facial Recognition")],
title="Facial Recognition",
description="Extracts and outputs the facial vector using facebook/dino-vitb16.",
live=False
)
all_interface = gr.Interface(
fn=analyze_all,
inputs=gr.Image(label="Upload an Image for All Inferences"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Combined Analysis")],
title="All Inferences",
description="Runs posture, emotion, object, and face detection all at once.",
live=False
)
tabbed_interface = gr.TabbedInterface(
interface_list=[
posture_interface,
emotion_interface,
objects_interface,
faces_interface,
facial_recognition_interface,
all_interface
],
tab_names=[
"Posture",
"Emotion",
"Objects",
"Faces",
"Facial Recognition",
"All Inferences"
]
)
# -----------------------------
# Wrap in a Blocks Layout and Launch
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title' style='color: #32CD32;'>Multi-Analysis Image App</h1>")
gr.Markdown("<p class='gradio-description' style='color: #32CD32;'>Upload an image to run high-tech analysis for posture, emotions, objects, faces, and facial embeddings.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()
|