David Driscoll
commited on
Commit
·
5148899
1
Parent(s):
4d52ef2
Update app
Browse files
app.py
CHANGED
@@ -28,44 +28,66 @@ object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
|
28 |
object_detection_model.eval()
|
29 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
30 |
|
31 |
-
# Facial Emotion Detection using FER (
|
32 |
emotion_detector = FER(mtcnn=True)
|
33 |
|
34 |
# -----------------------------
|
35 |
# Define Analysis Functions
|
36 |
# -----------------------------
|
37 |
|
38 |
-
def analyze_posture(
|
39 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
pose_results = pose.process(frame_rgb)
|
41 |
-
posture_text = "No posture detected"
|
42 |
if pose_results.pose_landmarks:
|
43 |
-
|
44 |
-
# Draw the pose landmarks on the output image
|
45 |
mp_drawing.draw_landmarks(
|
46 |
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
47 |
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
48 |
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
49 |
)
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
def analyze_emotion(
|
53 |
-
"""
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
56 |
emotions = emotion_detector.detect_emotions(frame_rgb)
|
57 |
if emotions:
|
58 |
-
# Use the first detected face and its top emotion
|
59 |
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
60 |
emotion_text = f"{top_emotion} ({score:.2f})"
|
61 |
else:
|
62 |
emotion_text = "No face detected for emotion analysis"
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
def analyze_objects(
|
66 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
image_pil = Image.fromarray(frame_rgb)
|
68 |
img_tensor = obj_transform(image_pil)
|
|
|
69 |
with torch.no_grad():
|
70 |
detections = object_detection_model([img_tensor])[0]
|
71 |
|
@@ -74,15 +96,24 @@ def analyze_objects(frame_rgb, output_frame):
|
|
74 |
for box in detected_boxes:
|
75 |
box = box.int().cpu().numpy()
|
76 |
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
def analyze_faces(
|
81 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
face_results = face_detection.process(frame_rgb)
|
83 |
-
|
|
|
84 |
if face_results.detections:
|
85 |
-
|
86 |
h, w, _ = output_frame.shape
|
87 |
for detection in face_results.detections:
|
88 |
bbox = detection.location_data.relative_bounding_box
|
@@ -91,77 +122,91 @@ def analyze_faces(frame_rgb, output_frame):
|
|
91 |
box_w = int(bbox.width * w)
|
92 |
box_h = int(bbox.height * h)
|
93 |
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
|
94 |
-
|
|
|
|
|
95 |
|
96 |
# -----------------------------
|
97 |
-
#
|
98 |
# -----------------------------
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
# Run analyses
|
122 |
-
posture_result = analyze_posture(frame_rgb, output_frame)
|
123 |
-
emotion_result = analyze_emotion(frame)
|
124 |
-
object_result = analyze_objects(frame_rgb, output_frame)
|
125 |
-
face_result = analyze_faces(frame_rgb, output_frame)
|
126 |
-
|
127 |
-
# Compose the result summary text
|
128 |
-
summary = (
|
129 |
-
f"Posture Analysis: {posture_result}\n"
|
130 |
-
f"Emotion Analysis: {emotion_result}\n"
|
131 |
-
f"Object Detection: {object_result}\n"
|
132 |
-
f"Face Detection: {face_result}"
|
133 |
-
)
|
134 |
-
|
135 |
-
# Optionally, overlay some summary text on the image
|
136 |
-
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30),
|
137 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
138 |
-
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70),
|
139 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
|
140 |
-
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110),
|
141 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
142 |
-
|
143 |
-
return output_frame, summary
|
144 |
|
145 |
# -----------------------------
|
146 |
-
#
|
147 |
# -----------------------------
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
gr.Image(type="numpy", label="Annotated Output"),
|
156 |
-
gr.Textbox(label="Analysis Summary")
|
157 |
-
],
|
158 |
-
title="Real-Time Multi-Analysis App",
|
159 |
-
description=(
|
160 |
-
"This app performs real-time posture analysis, facial emotion detection, "
|
161 |
-
"object detection, and face detection using your webcam."
|
162 |
-
),
|
163 |
-
live=True
|
164 |
)
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
if __name__ == "__main__":
|
167 |
-
|
|
|
28 |
object_detection_model.eval()
|
29 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
30 |
|
31 |
+
# Facial Emotion Detection using FER (requires TensorFlow)
|
32 |
emotion_detector = FER(mtcnn=True)
|
33 |
|
34 |
# -----------------------------
|
35 |
# Define Analysis Functions
|
36 |
# -----------------------------
|
37 |
|
38 |
+
def analyze_posture(image):
|
39 |
+
"""
|
40 |
+
Takes an image (captured via the webcam), processes it with MediaPipe Pose,
|
41 |
+
and returns an annotated image and a text summary.
|
42 |
+
"""
|
43 |
+
# Convert from PIL (RGB) to OpenCV BGR format
|
44 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
45 |
+
output_frame = frame.copy()
|
46 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
47 |
+
|
48 |
+
posture_result = "No posture detected"
|
49 |
pose_results = pose.process(frame_rgb)
|
|
|
50 |
if pose_results.pose_landmarks:
|
51 |
+
posture_result = "Posture detected"
|
|
|
52 |
mp_drawing.draw_landmarks(
|
53 |
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
54 |
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
55 |
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
56 |
)
|
57 |
+
|
58 |
+
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
59 |
+
return annotated_image, f"Posture Analysis: {posture_result}"
|
60 |
|
61 |
+
def analyze_emotion(image):
|
62 |
+
"""
|
63 |
+
Uses FER to detect facial emotions from the captured image.
|
64 |
+
Returns the original image and a text summary.
|
65 |
+
"""
|
66 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
67 |
+
# FER expects an RGB image
|
68 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
69 |
emotions = emotion_detector.detect_emotions(frame_rgb)
|
70 |
if emotions:
|
|
|
71 |
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
72 |
emotion_text = f"{top_emotion} ({score:.2f})"
|
73 |
else:
|
74 |
emotion_text = "No face detected for emotion analysis"
|
75 |
+
|
76 |
+
# For simplicity, we return the original image
|
77 |
+
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
78 |
+
return annotated_image, f"Emotion Analysis: {emotion_text}"
|
79 |
|
80 |
+
def analyze_objects(image):
|
81 |
+
"""
|
82 |
+
Uses a pretrained Faster R-CNN to detect objects in the image.
|
83 |
+
Returns an annotated image with bounding boxes and a text summary.
|
84 |
+
"""
|
85 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
86 |
+
output_frame = frame.copy()
|
87 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
88 |
image_pil = Image.fromarray(frame_rgb)
|
89 |
img_tensor = obj_transform(image_pil)
|
90 |
+
|
91 |
with torch.no_grad():
|
92 |
detections = object_detection_model([img_tensor])[0]
|
93 |
|
|
|
96 |
for box in detected_boxes:
|
97 |
box = box.int().cpu().numpy()
|
98 |
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
|
99 |
+
|
100 |
+
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
|
101 |
+
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
102 |
+
return annotated_image, f"Object Detection: {object_result}"
|
103 |
|
104 |
+
def analyze_faces(image):
|
105 |
+
"""
|
106 |
+
Uses MediaPipe face detection to identify faces in the image.
|
107 |
+
Returns an annotated image with face bounding boxes and a text summary.
|
108 |
+
"""
|
109 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
110 |
+
output_frame = frame.copy()
|
111 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
112 |
face_results = face_detection.process(frame_rgb)
|
113 |
+
|
114 |
+
face_result = "No faces detected"
|
115 |
if face_results.detections:
|
116 |
+
face_result = f"Detected {len(face_results.detections)} face(s)"
|
117 |
h, w, _ = output_frame.shape
|
118 |
for detection in face_results.detections:
|
119 |
bbox = detection.location_data.relative_bounding_box
|
|
|
122 |
box_w = int(bbox.width * w)
|
123 |
box_h = int(bbox.height * h)
|
124 |
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
|
125 |
+
|
126 |
+
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
127 |
+
return annotated_image, f"Face Detection: {face_result}"
|
128 |
|
129 |
# -----------------------------
|
130 |
+
# Custom CSS for a High-Tech Look
|
131 |
# -----------------------------
|
132 |
+
custom_css = """
|
133 |
+
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
134 |
|
135 |
+
body {
|
136 |
+
background-color: #0e0e0e;
|
137 |
+
color: #e0e0e0;
|
138 |
+
font-family: 'Orbitron', sans-serif;
|
139 |
+
}
|
140 |
+
.gradio-container {
|
141 |
+
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
|
142 |
+
border-radius: 10px;
|
143 |
+
padding: 20px;
|
144 |
+
}
|
145 |
+
.gradio-title {
|
146 |
+
font-size: 2.5em;
|
147 |
+
color: #66fcf1;
|
148 |
+
text-align: center;
|
149 |
+
}
|
150 |
+
.gradio-description {
|
151 |
+
font-size: 1.2em;
|
152 |
+
text-align: center;
|
153 |
+
margin-bottom: 20px;
|
154 |
+
}
|
155 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# -----------------------------
|
158 |
+
# Create Individual Interfaces for Each Analysis
|
159 |
# -----------------------------
|
160 |
|
161 |
+
posture_interface = gr.Interface(
|
162 |
+
fn=analyze_posture,
|
163 |
+
inputs=gr.Camera(label="Capture Your Posture"),
|
164 |
+
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
|
165 |
+
title="Posture Analysis",
|
166 |
+
description="Detects your posture using MediaPipe."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
|
169 |
+
emotion_interface = gr.Interface(
|
170 |
+
fn=analyze_emotion,
|
171 |
+
inputs=gr.Camera(label="Capture Your Face"),
|
172 |
+
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
|
173 |
+
title="Emotion Analysis",
|
174 |
+
description="Detects facial emotions using FER."
|
175 |
+
)
|
176 |
+
|
177 |
+
objects_interface = gr.Interface(
|
178 |
+
fn=analyze_objects,
|
179 |
+
inputs=gr.Camera(label="Capture the Scene"),
|
180 |
+
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
|
181 |
+
title="Object Detection",
|
182 |
+
description="Detects objects using a pretrained Faster R-CNN."
|
183 |
+
)
|
184 |
+
|
185 |
+
faces_interface = gr.Interface(
|
186 |
+
fn=analyze_faces,
|
187 |
+
inputs=gr.Camera(label="Capture Your Face"),
|
188 |
+
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
|
189 |
+
title="Face Detection",
|
190 |
+
description="Detects faces using MediaPipe."
|
191 |
+
)
|
192 |
+
|
193 |
+
# -----------------------------
|
194 |
+
# Create a Tabbed Interface for All Analyses
|
195 |
+
# -----------------------------
|
196 |
+
|
197 |
+
tabbed_interface = gr.TabbedInterface(
|
198 |
+
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
|
199 |
+
tab_names=["Posture", "Emotion", "Objects", "Faces"]
|
200 |
+
)
|
201 |
+
|
202 |
+
# -----------------------------
|
203 |
+
# Wrap Everything in a Blocks Layout with Custom CSS
|
204 |
+
# -----------------------------
|
205 |
+
demo = gr.Blocks(css=custom_css)
|
206 |
+
with demo:
|
207 |
+
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
|
208 |
+
gr.Markdown("<p class='gradio-description'>Experience a high-tech, cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
|
209 |
+
demo_tab = tabbed_interface
|
210 |
+
|
211 |
if __name__ == "__main__":
|
212 |
+
demo.launch()
|