David Driscoll
commited on
Commit
·
e5a1544
1
Parent(s):
81307fe
Added Gradio multi-analysis app
Browse files- app.py +156 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision import models, transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import mediapipe as mp
|
| 8 |
+
from fer import FER # Facial emotion recognition
|
| 9 |
+
|
| 10 |
+
# -----------------------------
|
| 11 |
+
# Initialize Models and Helpers
|
| 12 |
+
# -----------------------------
|
| 13 |
+
|
| 14 |
+
# MediaPipe Pose for posture analysis
|
| 15 |
+
mp_pose = mp.solutions.pose
|
| 16 |
+
pose = mp_pose.Pose()
|
| 17 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 18 |
+
|
| 19 |
+
# MediaPipe Face Detection for face detection
|
| 20 |
+
mp_face_detection = mp.solutions.face_detection
|
| 21 |
+
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
| 22 |
+
|
| 23 |
+
# Object Detection Model: Faster R-CNN (pretrained on COCO)
|
| 24 |
+
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
| 25 |
+
object_detection_model.eval()
|
| 26 |
+
obj_transform = transforms.Compose([transforms.ToTensor()])
|
| 27 |
+
|
| 28 |
+
# Facial Emotion Detection using FER (this model will detect emotions from a face)
|
| 29 |
+
emotion_detector = FER(mtcnn=True)
|
| 30 |
+
|
| 31 |
+
# -----------------------------
|
| 32 |
+
# Define Analysis Functions
|
| 33 |
+
# -----------------------------
|
| 34 |
+
|
| 35 |
+
def analyze_posture(frame_rgb, output_frame):
|
| 36 |
+
"""Runs pose estimation and draws landmarks on the frame."""
|
| 37 |
+
pose_results = pose.process(frame_rgb)
|
| 38 |
+
posture_text = "No posture detected"
|
| 39 |
+
if pose_results.pose_landmarks:
|
| 40 |
+
posture_text = "Posture detected"
|
| 41 |
+
# Draw the pose landmarks on the output image (convert back to BGR for OpenCV)
|
| 42 |
+
mp_drawing.draw_landmarks(
|
| 43 |
+
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
|
| 44 |
+
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
| 45 |
+
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
| 46 |
+
)
|
| 47 |
+
return posture_text
|
| 48 |
+
|
| 49 |
+
def analyze_emotion(frame):
|
| 50 |
+
"""Detects emotion from faces using FER. Returns the dominant emotion."""
|
| 51 |
+
# FER expects RGB images
|
| 52 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 53 |
+
emotions = emotion_detector.detect_emotions(frame_rgb)
|
| 54 |
+
if emotions:
|
| 55 |
+
# Use the first detected face and its top emotion
|
| 56 |
+
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
| 57 |
+
emotion_text = f"{top_emotion} ({score:.2f})"
|
| 58 |
+
else:
|
| 59 |
+
emotion_text = "No face detected for emotion analysis"
|
| 60 |
+
return emotion_text
|
| 61 |
+
|
| 62 |
+
def analyze_objects(frame_rgb, output_frame):
|
| 63 |
+
"""Performs object detection and draws bounding boxes for detections above a threshold."""
|
| 64 |
+
image_pil = Image.fromarray(frame_rgb)
|
| 65 |
+
img_tensor = obj_transform(image_pil)
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
detections = object_detection_model([img_tensor])[0]
|
| 68 |
+
|
| 69 |
+
threshold = 0.8
|
| 70 |
+
detected_boxes = detections["boxes"][detections["scores"] > threshold]
|
| 71 |
+
for box in detected_boxes:
|
| 72 |
+
box = box.int().cpu().numpy()
|
| 73 |
+
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
|
| 74 |
+
object_text = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
|
| 75 |
+
return object_text
|
| 76 |
+
|
| 77 |
+
def analyze_faces(frame_rgb, output_frame):
|
| 78 |
+
"""Detects faces using MediaPipe and draws bounding boxes."""
|
| 79 |
+
face_results = face_detection.process(frame_rgb)
|
| 80 |
+
face_text = "No faces detected"
|
| 81 |
+
if face_results.detections:
|
| 82 |
+
face_text = f"Detected {len(face_results.detections)} face(s)"
|
| 83 |
+
h, w, _ = output_frame.shape
|
| 84 |
+
for detection in face_results.detections:
|
| 85 |
+
bbox = detection.location_data.relative_bounding_box
|
| 86 |
+
x = int(bbox.xmin * w)
|
| 87 |
+
y = int(bbox.ymin * h)
|
| 88 |
+
box_w = int(bbox.width * w)
|
| 89 |
+
box_h = int(bbox.height * h)
|
| 90 |
+
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
|
| 91 |
+
return face_text
|
| 92 |
+
|
| 93 |
+
# -----------------------------
|
| 94 |
+
# Main Analysis Function
|
| 95 |
+
# -----------------------------
|
| 96 |
+
|
| 97 |
+
def analyze_webcam(frame):
|
| 98 |
+
"""
|
| 99 |
+
Runs posture analysis, facial emotion analysis, object detection, and face detection
|
| 100 |
+
on the given webcam frame. Returns an annotated image and a textual summary.
|
| 101 |
+
"""
|
| 102 |
+
if frame is None:
|
| 103 |
+
return None, "No frame provided."
|
| 104 |
+
|
| 105 |
+
# The input frame is in BGR (as from OpenCV). Create a copy for drawing.
|
| 106 |
+
output_frame = frame.copy()
|
| 107 |
+
|
| 108 |
+
# Convert frame to RGB for analysis
|
| 109 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 110 |
+
|
| 111 |
+
# Run analyses
|
| 112 |
+
posture_result = analyze_posture(frame_rgb, output_frame)
|
| 113 |
+
emotion_result = analyze_emotion(frame)
|
| 114 |
+
object_result = analyze_objects(frame_rgb, output_frame)
|
| 115 |
+
face_result = analyze_faces(frame_rgb, output_frame)
|
| 116 |
+
|
| 117 |
+
# Compose the result summary text
|
| 118 |
+
summary = (
|
| 119 |
+
f"Posture Analysis: {posture_result}\n"
|
| 120 |
+
f"Emotion Analysis: {emotion_result}\n"
|
| 121 |
+
f"Object Detection: {object_result}\n"
|
| 122 |
+
f"Face Detection: {face_result}"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Optionally, overlay some of the summary text on the image
|
| 126 |
+
cv2.putText(output_frame, f"Emotion: {emotion_result}", (10, 30),
|
| 127 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
| 128 |
+
cv2.putText(output_frame, f"Objects: {object_result}", (10, 70),
|
| 129 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
|
| 130 |
+
cv2.putText(output_frame, f"Faces: {face_result}", (10, 110),
|
| 131 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
| 132 |
+
|
| 133 |
+
return output_frame, summary
|
| 134 |
+
|
| 135 |
+
# -----------------------------
|
| 136 |
+
# Gradio Interface Setup
|
| 137 |
+
# -----------------------------
|
| 138 |
+
|
| 139 |
+
# We output both an image (with drawn annotations) and a text summary.
|
| 140 |
+
interface = gr.Interface(
|
| 141 |
+
fn=analyze_webcam,
|
| 142 |
+
inputs=gr.Image(source="webcam", streaming=True, label="Webcam Feed"),
|
| 143 |
+
outputs=[
|
| 144 |
+
gr.Image(type="numpy", label="Annotated Output"),
|
| 145 |
+
gr.Textbox(label="Analysis Summary")
|
| 146 |
+
],
|
| 147 |
+
title="Real-Time Multi-Analysis App",
|
| 148 |
+
description=(
|
| 149 |
+
"This app performs real-time posture analysis, facial emotion detection, "
|
| 150 |
+
"object detection, and face detection using your webcam."
|
| 151 |
+
),
|
| 152 |
+
live=True
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
if __name__ == "__main__":
|
| 156 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
opencv-python
|
| 5 |
+
numpy
|
| 6 |
+
mediapipe
|
| 7 |
+
Pillow
|
| 8 |
+
fer
|