David Driscoll
commited on
Commit
·
dfc63b4
1
Parent(s):
d33634b
Add description
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ DESIRED_SIZE = (640, 480)
|
|
24 |
# -----------------------------
|
25 |
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
|
26 |
emotion_cache = {"text": "Initializing...", "counter": 0}
|
27 |
-
objects_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
28 |
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
29 |
|
30 |
# -----------------------------
|
@@ -47,6 +47,9 @@ obj_transform = transforms.Compose([transforms.ToTensor()])
|
|
47 |
# Initialize the FER emotion detector
|
48 |
emotion_detector = FER(mtcnn=True)
|
49 |
|
|
|
|
|
|
|
50 |
# -----------------------------
|
51 |
# Overlay Drawing Functions
|
52 |
# -----------------------------
|
@@ -120,11 +123,16 @@ def compute_objects_overlay(image):
|
|
120 |
|
121 |
threshold = 0.8
|
122 |
boxes = []
|
123 |
-
|
|
|
124 |
if score > threshold:
|
125 |
boxes.append(tuple(box.int().cpu().numpy()))
|
|
|
|
|
|
|
126 |
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
|
127 |
-
|
|
|
128 |
|
129 |
def compute_faces_overlay(image):
|
130 |
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
@@ -182,14 +190,16 @@ def analyze_objects_current(image):
|
|
182 |
objects_cache["counter"] += 1
|
183 |
current_frame = np.array(image)
|
184 |
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
|
185 |
-
boxes, text = compute_objects_overlay(image)
|
186 |
objects_cache["boxes"] = boxes
|
187 |
objects_cache["text"] = text
|
|
|
188 |
|
189 |
output = current_frame.copy()
|
190 |
if objects_cache["boxes"]:
|
191 |
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
|
192 |
-
|
|
|
193 |
|
194 |
def analyze_faces_current(image):
|
195 |
global faces_cache
|
@@ -206,7 +216,6 @@ def analyze_faces_current(image):
|
|
206 |
return output, f"<div style='color: lime !important;'>Face Detection: {faces_cache['text']}</div>"
|
207 |
|
208 |
def analyze_all(image):
|
209 |
-
# Run all analyses on the same image
|
210 |
current_frame = np.array(image).copy()
|
211 |
|
212 |
# Posture Analysis
|
@@ -218,7 +227,7 @@ def analyze_all(image):
|
|
218 |
emotion_text = compute_emotion_overlay(image)
|
219 |
|
220 |
# Object Detection
|
221 |
-
boxes_obj, objects_text = compute_objects_overlay(image)
|
222 |
if boxes_obj:
|
223 |
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
|
224 |
|
@@ -227,26 +236,37 @@ def analyze_all(image):
|
|
227 |
if boxes_face:
|
228 |
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
|
229 |
|
|
|
230 |
combined_text = (
|
231 |
-
f"Posture Analysis
|
232 |
-
f"Emotion Analysis
|
233 |
-
f"Object Detection
|
234 |
-
f"
|
|
|
235 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
combined_text_html = f"<div style='color: lime !important;'>{combined_text}</div>"
|
237 |
return current_frame, combined_text_html
|
238 |
|
239 |
# -----------------------------
|
240 |
-
# Custom CSS (High-Tech Theme)
|
241 |
# -----------------------------
|
242 |
custom_css = """
|
243 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
244 |
body {
|
245 |
background-color: #0e0e0e;
|
246 |
-
color: #ffffff;
|
247 |
font-family: 'Orbitron', sans-serif;
|
248 |
margin: 0;
|
249 |
padding: 0;
|
|
|
250 |
}
|
251 |
.gradio-container {
|
252 |
background: linear-gradient(135deg, #1a1a1a, #333333);
|
@@ -257,23 +277,14 @@ body {
|
|
257 |
max-width: 1200px;
|
258 |
margin: auto;
|
259 |
}
|
260 |
-
.gradio-title {
|
261 |
-
|
262 |
-
color: #32CD32;
|
263 |
-
text-align: center;
|
264 |
-
margin-bottom: 0.2em;
|
265 |
text-shadow: 0 0 10px #32CD32;
|
266 |
}
|
267 |
-
.
|
268 |
-
font-size: 1.2em;
|
269 |
-
text-align: center;
|
270 |
-
margin-bottom: 1em;
|
271 |
-
color: #32CD32;
|
272 |
-
text-shadow: 0 0 8px #32CD32;
|
273 |
-
}
|
274 |
-
input, button, .output, .tab-item {
|
275 |
border: 1px solid #32CD32;
|
276 |
box-shadow: 0 0 8px #32CD32;
|
|
|
277 |
}
|
278 |
"""
|
279 |
|
@@ -284,7 +295,7 @@ posture_interface = gr.Interface(
|
|
284 |
fn=analyze_posture_current,
|
285 |
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
|
286 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
|
287 |
-
title="Posture
|
288 |
description="Detects your posture using MediaPipe with connector lines.",
|
289 |
live=False
|
290 |
)
|
@@ -293,7 +304,7 @@ emotion_interface = gr.Interface(
|
|
293 |
fn=analyze_emotion_current,
|
294 |
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
|
295 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
|
296 |
-
title="Emotion
|
297 |
description="Detects facial emotions using FER.",
|
298 |
live=False
|
299 |
)
|
@@ -302,7 +313,7 @@ objects_interface = gr.Interface(
|
|
302 |
fn=analyze_objects_current,
|
303 |
inputs=gr.Image(label="Upload an Image for Object Detection"),
|
304 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
|
305 |
-
title="
|
306 |
description="Detects objects using a pretrained Faster R-CNN.",
|
307 |
live=False
|
308 |
)
|
@@ -311,7 +322,7 @@ faces_interface = gr.Interface(
|
|
311 |
fn=analyze_faces_current,
|
312 |
inputs=gr.Image(label="Upload an Image for Face Detection"),
|
313 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
|
314 |
-
title="
|
315 |
description="Detects faces using MediaPipe.",
|
316 |
live=False
|
317 |
)
|
@@ -338,10 +349,8 @@ tabbed_interface = gr.TabbedInterface(
|
|
338 |
# -----------------------------
|
339 |
demo = gr.Blocks(css=custom_css)
|
340 |
with demo:
|
341 |
-
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
|
342 |
-
gr.Markdown(
|
343 |
-
"<p class='gradio-description'>Upload an image to run high-tech analysis for posture, emotions, objects, and faces.</p>"
|
344 |
-
)
|
345 |
tabbed_interface.render()
|
346 |
|
347 |
if __name__ == "__main__":
|
|
|
24 |
# -----------------------------
|
25 |
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
|
26 |
emotion_cache = {"text": "Initializing...", "counter": 0}
|
27 |
+
objects_cache = {"boxes": None, "text": "Initializing...", "object_list_text": "", "counter": 0}
|
28 |
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
29 |
|
30 |
# -----------------------------
|
|
|
47 |
# Initialize the FER emotion detector
|
48 |
emotion_detector = FER(mtcnn=True)
|
49 |
|
50 |
+
# Retrieve object categories from model weights metadata
|
51 |
+
object_categories = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.meta["categories"]
|
52 |
+
|
53 |
# -----------------------------
|
54 |
# Overlay Drawing Functions
|
55 |
# -----------------------------
|
|
|
123 |
|
124 |
threshold = 0.8
|
125 |
boxes = []
|
126 |
+
object_list = []
|
127 |
+
for box, score, label in zip(detections["boxes"], detections["scores"], detections["labels"]):
|
128 |
if score > threshold:
|
129 |
boxes.append(tuple(box.int().cpu().numpy()))
|
130 |
+
label_idx = int(label)
|
131 |
+
label_name = object_categories[label_idx] if label_idx < len(object_categories) else "Unknown"
|
132 |
+
object_list.append(f"{label_name} ({score:.2f})")
|
133 |
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
|
134 |
+
object_list_text = " | ".join(object_list) if object_list else "None"
|
135 |
+
return boxes, text, object_list_text
|
136 |
|
137 |
def compute_faces_overlay(image):
|
138 |
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
|
|
190 |
objects_cache["counter"] += 1
|
191 |
current_frame = np.array(image)
|
192 |
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
|
193 |
+
boxes, text, object_list_text = compute_objects_overlay(image)
|
194 |
objects_cache["boxes"] = boxes
|
195 |
objects_cache["text"] = text
|
196 |
+
objects_cache["object_list_text"] = object_list_text
|
197 |
|
198 |
output = current_frame.copy()
|
199 |
if objects_cache["boxes"]:
|
200 |
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
|
201 |
+
combined_text = f"Object Detection: {objects_cache['text']}<br>Details: {objects_cache['object_list_text']}"
|
202 |
+
return output, f"<div style='color: lime !important;'>{combined_text}</div>"
|
203 |
|
204 |
def analyze_faces_current(image):
|
205 |
global faces_cache
|
|
|
216 |
return output, f"<div style='color: lime !important;'>Face Detection: {faces_cache['text']}</div>"
|
217 |
|
218 |
def analyze_all(image):
|
|
|
219 |
current_frame = np.array(image).copy()
|
220 |
|
221 |
# Posture Analysis
|
|
|
227 |
emotion_text = compute_emotion_overlay(image)
|
228 |
|
229 |
# Object Detection
|
230 |
+
boxes_obj, objects_text, object_list_text = compute_objects_overlay(image)
|
231 |
if boxes_obj:
|
232 |
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
|
233 |
|
|
|
236 |
if boxes_face:
|
237 |
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
|
238 |
|
239 |
+
# Combined Analysis Text
|
240 |
combined_text = (
|
241 |
+
f"<b>Posture Analysis:</b> {posture_text}<br>"
|
242 |
+
f"<b>Emotion Analysis:</b> {emotion_text}<br>"
|
243 |
+
f"<b>Object Detection:</b> {objects_text}<br>"
|
244 |
+
f"<b>Detected Objects:</b> {object_list_text}<br>"
|
245 |
+
f"<b>Face Detection:</b> {faces_text}"
|
246 |
)
|
247 |
+
|
248 |
+
# Image Description Panel (High-Tech)
|
249 |
+
if object_list_text and object_list_text != "None":
|
250 |
+
description_text = f"Image Description: The scene features {object_list_text}."
|
251 |
+
else:
|
252 |
+
description_text = "Image Description: No prominent objects detected."
|
253 |
+
|
254 |
+
combined_text += f"<br><br><div style='border:1px solid lime; padding:10px; box-shadow: 0 0 10px lime;'><b>{description_text}</b></div>"
|
255 |
+
|
256 |
combined_text_html = f"<div style='color: lime !important;'>{combined_text}</div>"
|
257 |
return current_frame, combined_text_html
|
258 |
|
259 |
# -----------------------------
|
260 |
+
# Custom CSS (High-Tech Neon Theme)
|
261 |
# -----------------------------
|
262 |
custom_css = """
|
263 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
264 |
body {
|
265 |
background-color: #0e0e0e;
|
|
|
266 |
font-family: 'Orbitron', sans-serif;
|
267 |
margin: 0;
|
268 |
padding: 0;
|
269 |
+
color: #32CD32;
|
270 |
}
|
271 |
.gradio-container {
|
272 |
background: linear-gradient(135deg, #1a1a1a, #333333);
|
|
|
277 |
max-width: 1200px;
|
278 |
margin: auto;
|
279 |
}
|
280 |
+
.gradio-title, .gradio-description, .tab-item, .tab-item * {
|
281 |
+
color: #32CD32 !important;
|
|
|
|
|
|
|
282 |
text-shadow: 0 0 10px #32CD32;
|
283 |
}
|
284 |
+
input, button, .output {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
border: 1px solid #32CD32;
|
286 |
box-shadow: 0 0 8px #32CD32;
|
287 |
+
color: #32CD32;
|
288 |
}
|
289 |
"""
|
290 |
|
|
|
295 |
fn=analyze_posture_current,
|
296 |
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
|
297 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
|
298 |
+
title="Posture",
|
299 |
description="Detects your posture using MediaPipe with connector lines.",
|
300 |
live=False
|
301 |
)
|
|
|
304 |
fn=analyze_emotion_current,
|
305 |
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
|
306 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
|
307 |
+
title="Emotion",
|
308 |
description="Detects facial emotions using FER.",
|
309 |
live=False
|
310 |
)
|
|
|
313 |
fn=analyze_objects_current,
|
314 |
inputs=gr.Image(label="Upload an Image for Object Detection"),
|
315 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
|
316 |
+
title="Objects",
|
317 |
description="Detects objects using a pretrained Faster R-CNN.",
|
318 |
live=False
|
319 |
)
|
|
|
322 |
fn=analyze_faces_current,
|
323 |
inputs=gr.Image(label="Upload an Image for Face Detection"),
|
324 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
|
325 |
+
title="Faces",
|
326 |
description="Detects faces using MediaPipe.",
|
327 |
live=False
|
328 |
)
|
|
|
349 |
# -----------------------------
|
350 |
demo = gr.Blocks(css=custom_css)
|
351 |
with demo:
|
352 |
+
gr.Markdown("<h1 class='gradio-title' style='color: #32CD32;'>Multi-Analysis Image App</h1>")
|
353 |
+
gr.Markdown("<p class='gradio-description' style='color: #32CD32;'>Upload an image to run high-tech analysis for posture, emotions, objects, and faces.</p>")
|
|
|
|
|
354 |
tabbed_interface.render()
|
355 |
|
356 |
if __name__ == "__main__":
|