File size: 4,210 Bytes
f3cd231
 
7fa11aa
a48b15f
cdeeed6
 
7fa11aa
 
a48b15f
7fa11aa
53d5dd8
a48b15f
7fa11aa
 
a48b15f
 
5d4059c
 
 
 
 
 
 
 
 
 
 
 
 
7fa11aa
53d5dd8
7fa11aa
cdeeed6
e1a6930
cdeeed6
 
 
 
 
a48b15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3cd231
 
 
 
 
0f7de99
f3cd231
 
 
 
 
 
 
 
0f7de99
f3cd231
75b9622
f3cd231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30bd486
 
f3cd231
a48b15f
 
 
0f7de99
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import datasets
import numpy as np
from huggingface_hub import HfApi

from functools import lru_cache


def get_leaderboard_models():
    api = HfApi()
    
    # List all datasets in the open-llm-leaderboard organization
    datasets = api.list_datasets(author="open-llm-leaderboard")
    
    models = []
    for dataset in datasets:
        if dataset.id.endswith("-details"):
            dataset_id = dataset.id
            try:
                # Check if the dataset can be loaded
                check_gated = datasets.get_dataset_config_names(dataset_id)
                # Format: "open-llm-leaderboard/<provider>__<model_name>-details"
                model_part = dataset.id.split("/")[-1].replace("-details", "")
                if "__" in model_part:
                    provider, model = model_part.split("__", 1)
                    models.append(f"{provider}/{model}")
                else:
                    models.append(model_part)
            except Exception as e:
                pass
    
    return sorted(models)



@lru_cache(maxsize=1)
def get_leaderboard_models_cached():
    return get_leaderboard_models()


def get_leaderboard_datasets(model_ids):
    if model_ids is None:
        return ['bbh_boolean_expressions', 'bbh_causal_judgement', 'bbh_date_understanding', 'bbh_disambiguation_qa', 'bbh_formal_fallacies', 'bbh_geometric_shapes', 'bbh_hyperbaton', 'bbh_logical_deduction_five_objects', 'bbh_logical_deduction_seven_objects', 'bbh_logical_deduction_three_objects', 'bbh_movie_recommendation', 'bbh_navigate', 'bbh_object_counting', 'bbh_penguins_in_a_table', 'bbh_reasoning_about_colored_objects', 'bbh_ruin_names', 'bbh_salient_translation_error_detection', 'bbh_snarks', 'bbh_sports_understanding', 'bbh_temporal_sequences', 'bbh_tracking_shuffled_objects_five_objects', 'bbh_tracking_shuffled_objects_seven_objects', 'bbh_tracking_shuffled_objects_three_objects', 'bbh_web_of_lies', 'gpqa_diamond', 'gpqa_extended', 'gpqa_main', 'ifeval', 'math_algebra_hard', 'math_counting_and_prob_hard', 'math_geometry_hard', 'math_intermediate_algebra_hard', 'math_num_theory_hard', 'math_prealgebra_hard', 'math_precalculus_hard', 'mmlu_pro', 'musr_murder_mysteries', 'musr_object_placements', 'musr_team_allocation']

    # Map each model to its corresponding leaderboard version
    leaderboard_model_ids = [f"open-llm-leaderboard/{model_id.replace('/', '__')}-details" for model_id in model_ids]

    model_datasets = {}

    for model_id in leaderboard_model_ids:
        # Retrieve the list of available configuration names
        config_names = datasets.get_dataset_config_names(model_id)
        dataset_names = [name.split("__leaderboard_")[-1] for name in config_names]
        model_datasets[model_id] = set(dataset_names)

    # Compute the intersection of datasets across all models
    if model_datasets:
        common_datasets = set.intersection(*model_datasets.values())

    return sorted(common_datasets)
    

def filter_labels(doc):
    labels = []
    if "answer_index" in doc[0].keys():
        for d in doc:
            labels.append(d["answer_index"])
    else:
        for d in doc:
            if d["answer"] == "False":
                labels.append(0)
            elif d["answer"] == "True":
                labels.append(1)
            else:
                raise ValueError("Invalid label")
    return labels


def load_run_data(model_name, dataset_name):
    try:
        model_name = model_name.replace("/", "__")

        data = datasets.load_dataset("open-llm-leaderboard/" + model_name + "-details",
                                    name=model_name + "__leaderboard_" + dataset_name,
                                    split="latest")
        data = data.sort("doc_id")
        data = data.to_dict()

        # Get log probabilities for each response
        log_probs = []
        for resp in data["filtered_resps"]:
            log_prob = np.array([float(option[0]) for option in resp])
            log_probs.append(log_prob)

        # Get ground truth labels
        labels = filter_labels(data["doc"])
        
    except Exception as e:
        print(e)
        log_probs = []
        labels = []

    return log_probs, labels