Spaces:
Running
Running
Joschka Strueber
commited on
Commit
·
e1a6930
1
Parent(s):
228927e
[Add] create heatmaps for multiselection
Browse files- app.py +60 -51
- src/dataloading.py +5 -4
app.py
CHANGED
@@ -1,68 +1,77 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
|
5 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
6 |
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
filterable=True,
|
21 |
-
interactive=True,
|
22 |
-
allow_custom_value=False,
|
23 |
-
info="Search models from Open LLM Leaderboard"
|
24 |
-
)
|
25 |
-
|
26 |
-
dataset_dropdown = gr.Dropdown(
|
27 |
-
choices=datasets,
|
28 |
label="Select Dataset",
|
29 |
filterable=True,
|
30 |
interactive=True,
|
31 |
info="Leaderboard benchmark datasets"
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return f"Similarity between {model} and {dataset}: {0.85:.2f}"
|
42 |
-
|
43 |
-
compute_btn.click(
|
44 |
-
fn=compute_similarity,
|
45 |
-
inputs=[model_dropdown, dataset_dropdown],
|
46 |
-
outputs=similarity_output
|
47 |
)
|
48 |
-
|
49 |
-
return demo
|
50 |
-
|
51 |
-
|
52 |
-
def create_demo_with_refresh():
|
53 |
-
demo = create_demo()
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
fn=refresh_models,
|
62 |
-
outputs=model_dropdown
|
63 |
-
)
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import numpy as np
|
4 |
|
5 |
|
6 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
7 |
|
8 |
|
9 |
+
def create_heatmap(selected_models, benchmark):
|
10 |
+
if not selected_models:
|
11 |
+
return gr.update(visible=False)
|
12 |
+
|
13 |
+
# Generate random similarity matrix
|
14 |
+
size = len(selected_models)
|
15 |
+
similarities = np.random.rand(size, size)
|
16 |
+
|
17 |
+
# Create symmetric matrix (for demo purposes)
|
18 |
+
similarities = (similarities + similarities.T) / 2
|
19 |
+
|
20 |
+
# Create heatmap with Plotly
|
21 |
+
fig = go.Figure(data=go.Heatmap(
|
22 |
+
z=similarities,
|
23 |
+
x=selected_models,
|
24 |
+
y=selected_models,
|
25 |
+
colorscale='Viridis',
|
26 |
+
hoverongaps=False
|
27 |
+
))
|
28 |
+
|
29 |
+
fig.update_layout(
|
30 |
+
title=f"Model Similarity for {benchmark}",
|
31 |
+
xaxis_title="Models",
|
32 |
+
yaxis_title="Models",
|
33 |
+
height=600,
|
34 |
+
width=800
|
35 |
+
)
|
36 |
+
|
37 |
+
return fig
|
38 |
|
39 |
+
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
40 |
+
gr.Markdown("## Model Similarity Comparison Tool")
|
41 |
+
|
42 |
+
# Model selection section
|
43 |
+
with gr.Row():
|
44 |
+
dataset_dropdown = gr.Dropdown(
|
45 |
+
choices=get_leaderboard_datasets(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
label="Select Dataset",
|
47 |
filterable=True,
|
48 |
interactive=True,
|
49 |
info="Leaderboard benchmark datasets"
|
50 |
)
|
51 |
|
52 |
+
model_dropdown = gr.Dropdown(
|
53 |
+
choices=get_leaderboard_models_cached(),
|
54 |
+
label="Select Models",
|
55 |
+
multiselect=True,
|
56 |
+
filterable=True,
|
57 |
+
allow_custom_value=False,
|
58 |
+
info="Search and select multiple models (click selected models to remove)"
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# Heatmap display
|
62 |
+
heatmap = gr.Plot(
|
63 |
+
label="Similarity Heatmap",
|
64 |
+
visible=False,
|
65 |
+
container=False
|
66 |
+
)
|
|
|
|
|
|
|
67 |
|
68 |
+
# Interactive updates
|
69 |
+
model_dropdown.input(
|
70 |
+
fn=create_heatmap,
|
71 |
+
inputs=(model_dropdown, dataset_dropdown),
|
72 |
+
outputs=heatmap
|
73 |
+
)
|
74 |
+
|
75 |
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|
src/dataloading.py
CHANGED
@@ -5,16 +5,16 @@ from functools import lru_cache
|
|
5 |
def get_leaderboard_models():
|
6 |
api = HfApi()
|
7 |
|
8 |
-
# List all files in the
|
9 |
files = api.list_repo_files(
|
10 |
repo_id="open-llm-leaderboard/open_llm_leaderboard",
|
11 |
-
repo_type="space"
|
12 |
-
path="open_llm_leaderboard"
|
13 |
)
|
14 |
|
15 |
models = []
|
16 |
for file in files:
|
17 |
-
|
|
|
18 |
# Extract provider and model name from filename
|
19 |
filename = file.split("/")[-1].replace("-details", "")
|
20 |
provider, model = filename.split("__", 1)
|
@@ -23,6 +23,7 @@ def get_leaderboard_models():
|
|
23 |
return sorted(list(set(models))) # Remove duplicates
|
24 |
|
25 |
|
|
|
26 |
@lru_cache(maxsize=1)
|
27 |
def get_leaderboard_models_cached():
|
28 |
return get_leaderboard_models()
|
|
|
5 |
def get_leaderboard_models():
|
6 |
api = HfApi()
|
7 |
|
8 |
+
# List all files in the repository
|
9 |
files = api.list_repo_files(
|
10 |
repo_id="open-llm-leaderboard/open_llm_leaderboard",
|
11 |
+
repo_type="space"
|
|
|
12 |
)
|
13 |
|
14 |
models = []
|
15 |
for file in files:
|
16 |
+
# Filter files in the "open_llm_leaderboard" directory
|
17 |
+
if file.startswith("open_llm_leaderboard/") and "-details" in file and "__" in file:
|
18 |
# Extract provider and model name from filename
|
19 |
filename = file.split("/")[-1].replace("-details", "")
|
20 |
provider, model = filename.split("__", 1)
|
|
|
23 |
return sorted(list(set(models))) # Remove duplicates
|
24 |
|
25 |
|
26 |
+
|
27 |
@lru_cache(maxsize=1)
|
28 |
def get_leaderboard_models_cached():
|
29 |
return get_leaderboard_models()
|