Spaces:
Running
Running
Joschka Strueber
commited on
Commit
·
e1a6930
1
Parent(s):
228927e
[Add] create heatmaps for multiselection
Browse files- app.py +60 -51
- src/dataloading.py +5 -4
app.py
CHANGED
|
@@ -1,68 +1,77 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 6 |
|
| 7 |
|
| 8 |
-
def
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
filterable=True,
|
| 21 |
-
interactive=True,
|
| 22 |
-
allow_custom_value=False,
|
| 23 |
-
info="Search models from Open LLM Leaderboard"
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
dataset_dropdown = gr.Dropdown(
|
| 27 |
-
choices=datasets,
|
| 28 |
label="Select Dataset",
|
| 29 |
filterable=True,
|
| 30 |
interactive=True,
|
| 31 |
info="Leaderboard benchmark datasets"
|
| 32 |
)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
return f"Similarity between {model} and {dataset}: {0.85:.2f}"
|
| 42 |
-
|
| 43 |
-
compute_btn.click(
|
| 44 |
-
fn=compute_similarity,
|
| 45 |
-
inputs=[model_dropdown, dataset_dropdown],
|
| 46 |
-
outputs=similarity_output
|
| 47 |
)
|
| 48 |
-
|
| 49 |
-
return demo
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def create_demo_with_refresh():
|
| 53 |
-
demo = create_demo()
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
fn=refresh_models,
|
| 62 |
-
outputs=model_dropdown
|
| 63 |
-
)
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import plotly.graph_objects as go
|
| 3 |
+
import numpy as np
|
| 4 |
|
| 5 |
|
| 6 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 7 |
|
| 8 |
|
| 9 |
+
def create_heatmap(selected_models, benchmark):
|
| 10 |
+
if not selected_models:
|
| 11 |
+
return gr.update(visible=False)
|
| 12 |
+
|
| 13 |
+
# Generate random similarity matrix
|
| 14 |
+
size = len(selected_models)
|
| 15 |
+
similarities = np.random.rand(size, size)
|
| 16 |
+
|
| 17 |
+
# Create symmetric matrix (for demo purposes)
|
| 18 |
+
similarities = (similarities + similarities.T) / 2
|
| 19 |
+
|
| 20 |
+
# Create heatmap with Plotly
|
| 21 |
+
fig = go.Figure(data=go.Heatmap(
|
| 22 |
+
z=similarities,
|
| 23 |
+
x=selected_models,
|
| 24 |
+
y=selected_models,
|
| 25 |
+
colorscale='Viridis',
|
| 26 |
+
hoverongaps=False
|
| 27 |
+
))
|
| 28 |
+
|
| 29 |
+
fig.update_layout(
|
| 30 |
+
title=f"Model Similarity for {benchmark}",
|
| 31 |
+
xaxis_title="Models",
|
| 32 |
+
yaxis_title="Models",
|
| 33 |
+
height=600,
|
| 34 |
+
width=800
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
return fig
|
| 38 |
|
| 39 |
+
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 40 |
+
gr.Markdown("## Model Similarity Comparison Tool")
|
| 41 |
+
|
| 42 |
+
# Model selection section
|
| 43 |
+
with gr.Row():
|
| 44 |
+
dataset_dropdown = gr.Dropdown(
|
| 45 |
+
choices=get_leaderboard_datasets(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
label="Select Dataset",
|
| 47 |
filterable=True,
|
| 48 |
interactive=True,
|
| 49 |
info="Leaderboard benchmark datasets"
|
| 50 |
)
|
| 51 |
|
| 52 |
+
model_dropdown = gr.Dropdown(
|
| 53 |
+
choices=get_leaderboard_models_cached(),
|
| 54 |
+
label="Select Models",
|
| 55 |
+
multiselect=True,
|
| 56 |
+
filterable=True,
|
| 57 |
+
allow_custom_value=False,
|
| 58 |
+
info="Search and select multiple models (click selected models to remove)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Heatmap display
|
| 62 |
+
heatmap = gr.Plot(
|
| 63 |
+
label="Similarity Heatmap",
|
| 64 |
+
visible=False,
|
| 65 |
+
container=False
|
| 66 |
+
)
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
# Interactive updates
|
| 69 |
+
model_dropdown.input(
|
| 70 |
+
fn=create_heatmap,
|
| 71 |
+
inputs=(model_dropdown, dataset_dropdown),
|
| 72 |
+
outputs=heatmap
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
demo.launch()
|
src/dataloading.py
CHANGED
|
@@ -5,16 +5,16 @@ from functools import lru_cache
|
|
| 5 |
def get_leaderboard_models():
|
| 6 |
api = HfApi()
|
| 7 |
|
| 8 |
-
# List all files in the
|
| 9 |
files = api.list_repo_files(
|
| 10 |
repo_id="open-llm-leaderboard/open_llm_leaderboard",
|
| 11 |
-
repo_type="space"
|
| 12 |
-
path="open_llm_leaderboard"
|
| 13 |
)
|
| 14 |
|
| 15 |
models = []
|
| 16 |
for file in files:
|
| 17 |
-
|
|
|
|
| 18 |
# Extract provider and model name from filename
|
| 19 |
filename = file.split("/")[-1].replace("-details", "")
|
| 20 |
provider, model = filename.split("__", 1)
|
|
@@ -23,6 +23,7 @@ def get_leaderboard_models():
|
|
| 23 |
return sorted(list(set(models))) # Remove duplicates
|
| 24 |
|
| 25 |
|
|
|
|
| 26 |
@lru_cache(maxsize=1)
|
| 27 |
def get_leaderboard_models_cached():
|
| 28 |
return get_leaderboard_models()
|
|
|
|
| 5 |
def get_leaderboard_models():
|
| 6 |
api = HfApi()
|
| 7 |
|
| 8 |
+
# List all files in the repository
|
| 9 |
files = api.list_repo_files(
|
| 10 |
repo_id="open-llm-leaderboard/open_llm_leaderboard",
|
| 11 |
+
repo_type="space"
|
|
|
|
| 12 |
)
|
| 13 |
|
| 14 |
models = []
|
| 15 |
for file in files:
|
| 16 |
+
# Filter files in the "open_llm_leaderboard" directory
|
| 17 |
+
if file.startswith("open_llm_leaderboard/") and "-details" in file and "__" in file:
|
| 18 |
# Extract provider and model name from filename
|
| 19 |
filename = file.split("/")[-1].replace("-details", "")
|
| 20 |
provider, model = filename.split("__", 1)
|
|
|
|
| 23 |
return sorted(list(set(models))) # Remove duplicates
|
| 24 |
|
| 25 |
|
| 26 |
+
|
| 27 |
@lru_cache(maxsize=1)
|
| 28 |
def get_leaderboard_models_cached():
|
| 29 |
return get_leaderboard_models()
|