Spaces:
Running
Running
Joschka Strueber
commited on
Commit
·
f3cd231
1
Parent(s):
88e5618
[Add, Ref] pairwise sim, data loading, simple number example demo
Browse files- app.py +47 -80
- app_heatmap.py +103 -0
- requirements.txt +2 -1
- src/dataloading.py +46 -3
- src/similarity.py +25 -0
app.py
CHANGED
@@ -1,103 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
import numpy as np
|
4 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
fig = go.Figure(data=go.Heatmap(
|
19 |
-
z=similarities,
|
20 |
-
x=selected_models,
|
21 |
-
y=selected_models,
|
22 |
-
colorscale="Viridis",
|
23 |
-
zmin=0, zmax=1,
|
24 |
-
text=similarities,
|
25 |
-
hoverinfo="text"
|
26 |
-
))
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
margin=dict(l=100, r=100, t=100, b=100)
|
35 |
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
automargin=True
|
44 |
)
|
45 |
-
fig.update_yaxes(
|
46 |
-
type="category",
|
47 |
-
categoryorder="array",
|
48 |
-
categoryarray=selected_models,
|
49 |
-
automargin=True
|
50 |
-
)
|
51 |
-
|
52 |
-
# Convert the figure to an HTML string that includes Plotly.js via CDN.
|
53 |
-
return fig.to_html(full_html=False, include_plotlyjs="cdn")
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
gr.Markdown("## Model Similarity Comparison Tool")
|
63 |
-
|
64 |
-
with gr.Row():
|
65 |
-
dataset_dropdown = gr.Dropdown(
|
66 |
-
choices=get_leaderboard_datasets(),
|
67 |
-
label="Select Dataset",
|
68 |
-
filterable=True,
|
69 |
-
interactive=True,
|
70 |
-
info="Leaderboard benchmark datasets"
|
71 |
-
)
|
72 |
-
model_dropdown = gr.Dropdown(
|
73 |
-
choices=get_leaderboard_models_cached(),
|
74 |
-
label="Select Models",
|
75 |
-
multiselect=True,
|
76 |
-
filterable=True,
|
77 |
-
allow_custom_value=False,
|
78 |
-
info="Search and select multiple models"
|
79 |
-
)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
generate_btn.click(
|
86 |
fn=validate_inputs,
|
87 |
-
inputs=[
|
88 |
queue=False
|
89 |
).then(
|
90 |
-
fn=
|
91 |
-
inputs=[
|
92 |
-
outputs=
|
93 |
)
|
94 |
|
95 |
clear_btn = gr.Button("Clear Selection")
|
96 |
clear_btn.click(
|
97 |
-
lambda: [None, None, ""],
|
98 |
-
outputs=[
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
|
103 |
-
demo.launch(ssr_mode=False)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
3 |
+
from src.similarity import compute_similarity
|
4 |
|
5 |
+
def validate_inputs(selected_model_a, selected_model_b, selected_dataset):
|
6 |
+
if not selected_model_a:
|
7 |
+
raise gr.Error("Please select Model A!")
|
8 |
+
if not selected_model_b:
|
9 |
+
raise gr.Error("Please select Model B!")
|
10 |
+
if not selected_dataset:
|
11 |
+
raise gr.Error("Please select a dataset!")
|
12 |
|
13 |
+
def display_similarity(model_a, model_b, dataset):
|
14 |
+
# Assuming compute_similarity returns a float or a string
|
15 |
+
similarity_score = compute_similarity(model_a, model_b, dataset)
|
16 |
+
return f"The similarity between {model_a} and {model_b} on {dataset} is: {similarity_score}"
|
17 |
+
|
18 |
+
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
19 |
+
gr.Markdown("## Model Similarity Comparison Tool")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
dataset_dropdown = gr.Dropdown(
|
22 |
+
choices=get_leaderboard_datasets(),
|
23 |
+
label="Select Dataset",
|
24 |
+
filterable=True,
|
25 |
+
interactive=True,
|
26 |
+
info="Leaderboard benchmark datasets"
|
|
|
27 |
)
|
28 |
|
29 |
+
model_a_dropdown = gr.Dropdown(
|
30 |
+
choices=get_leaderboard_models_cached(),
|
31 |
+
label="Select Model A",
|
32 |
+
filterable=True,
|
33 |
+
allow_custom_value=False,
|
34 |
+
info="Search and select models"
|
|
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
model_b_dropdown = gr.Dropdown(
|
38 |
+
choices=get_leaderboard_models_cached(),
|
39 |
+
label="Select Model B",
|
40 |
+
filterable=True,
|
41 |
+
allow_custom_value=False,
|
42 |
+
info="Search and select models"
|
43 |
+
)
|
44 |
|
45 |
+
generate_btn = gr.Button("Compute Similarity", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Textbox to display the similarity result
|
48 |
+
similarity_output = gr.Textbox(
|
49 |
+
label="Similarity Result",
|
50 |
+
interactive=False
|
51 |
+
)
|
52 |
|
53 |
generate_btn.click(
|
54 |
fn=validate_inputs,
|
55 |
+
inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown],
|
56 |
queue=False
|
57 |
).then(
|
58 |
+
fn=display_similarity,
|
59 |
+
inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown],
|
60 |
+
outputs=similarity_output
|
61 |
)
|
62 |
|
63 |
clear_btn = gr.Button("Clear Selection")
|
64 |
clear_btn.click(
|
65 |
+
lambda: [None, None, None, ""],
|
66 |
+
outputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown, similarity_output]
|
67 |
)
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
demo.launch()
|
|
app_heatmap.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import numpy as np
|
4 |
+
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
5 |
+
|
6 |
+
# Optionally, force a renderer (may or may not help)
|
7 |
+
import plotly.io as pio
|
8 |
+
pio.renderers.default = "iframe"
|
9 |
+
|
10 |
+
def create_heatmap(selected_models, selected_dataset):
|
11 |
+
if not selected_models or not selected_dataset:
|
12 |
+
return "" # Return empty HTML if no input
|
13 |
+
size = len(selected_models)
|
14 |
+
similarities = np.random.rand(size, size)
|
15 |
+
similarities = (similarities + similarities.T) / 2
|
16 |
+
similarities = np.round(similarities, 2)
|
17 |
+
|
18 |
+
fig = go.Figure(data=go.Heatmap(
|
19 |
+
z=similarities,
|
20 |
+
x=selected_models,
|
21 |
+
y=selected_models,
|
22 |
+
colorscale="Viridis",
|
23 |
+
zmin=0, zmax=1,
|
24 |
+
text=similarities,
|
25 |
+
hoverinfo="text"
|
26 |
+
))
|
27 |
+
|
28 |
+
fig.update_layout(
|
29 |
+
title=f"Similarity Matrix for {selected_dataset}",
|
30 |
+
xaxis_title="Models",
|
31 |
+
yaxis_title="Models",
|
32 |
+
width=800,
|
33 |
+
height=800,
|
34 |
+
margin=dict(l=100, r=100, t=100, b=100)
|
35 |
+
)
|
36 |
+
|
37 |
+
# Force categorical ordering with explicit tick settings.
|
38 |
+
fig.update_xaxes(
|
39 |
+
type="category",
|
40 |
+
categoryorder="array",
|
41 |
+
categoryarray=selected_models,
|
42 |
+
tickangle=45,
|
43 |
+
automargin=True
|
44 |
+
)
|
45 |
+
fig.update_yaxes(
|
46 |
+
type="category",
|
47 |
+
categoryorder="array",
|
48 |
+
categoryarray=selected_models,
|
49 |
+
automargin=True
|
50 |
+
)
|
51 |
+
|
52 |
+
# Convert the figure to an HTML string that includes Plotly.js via CDN.
|
53 |
+
return fig.to_html(full_html=False, include_plotlyjs="cdn")
|
54 |
+
|
55 |
+
def validate_inputs(selected_models, selected_dataset):
|
56 |
+
if not selected_models:
|
57 |
+
raise gr.Error("Please select at least one model!")
|
58 |
+
if not selected_dataset:
|
59 |
+
raise gr.Error("Please select a dataset!")
|
60 |
+
|
61 |
+
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
62 |
+
gr.Markdown("## Model Similarity Comparison Tool")
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
dataset_dropdown = gr.Dropdown(
|
66 |
+
choices=get_leaderboard_datasets(),
|
67 |
+
label="Select Dataset",
|
68 |
+
filterable=True,
|
69 |
+
interactive=True,
|
70 |
+
info="Leaderboard benchmark datasets"
|
71 |
+
)
|
72 |
+
model_dropdown = gr.Dropdown(
|
73 |
+
choices=get_leaderboard_models_cached(),
|
74 |
+
label="Select Models",
|
75 |
+
multiselect=True,
|
76 |
+
filterable=True,
|
77 |
+
allow_custom_value=False,
|
78 |
+
info="Search and select multiple models"
|
79 |
+
)
|
80 |
+
|
81 |
+
generate_btn = gr.Button("Generate Heatmap", variant="primary")
|
82 |
+
# Use an HTML component instead of gr.Plot.
|
83 |
+
heatmap = gr.HTML(label="Similarity Heatmap", visible=True)
|
84 |
+
|
85 |
+
generate_btn.click(
|
86 |
+
fn=validate_inputs,
|
87 |
+
inputs=[model_dropdown, dataset_dropdown],
|
88 |
+
queue=False
|
89 |
+
).then(
|
90 |
+
fn=create_heatmap,
|
91 |
+
inputs=[model_dropdown, dataset_dropdown],
|
92 |
+
outputs=heatmap
|
93 |
+
)
|
94 |
+
|
95 |
+
clear_btn = gr.Button("Clear Selection")
|
96 |
+
clear_btn.click(
|
97 |
+
lambda: [None, None, ""],
|
98 |
+
outputs=[model_dropdown, dataset_dropdown, heatmap]
|
99 |
+
)
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
# On Spaces, disable server-side rendering.
|
103 |
+
demo.launch(ssr_mode=False)
|
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ matplotlib
|
|
5 |
seaborn
|
6 |
plotly
|
7 |
pandas
|
8 |
-
scienceplots
|
|
|
|
5 |
seaborn
|
6 |
plotly
|
7 |
pandas
|
8 |
+
scienceplots
|
9 |
+
lm-sim
|
src/dataloading.py
CHANGED
@@ -1,9 +1,12 @@
|
|
|
|
|
|
|
|
1 |
from huggingface_hub import HfApi
|
2 |
from functools import lru_cache
|
3 |
|
4 |
|
5 |
def get_leaderboard_models():
|
6 |
-
api = HfApi()
|
7 |
|
8 |
# List all datasets in the open-llm-leaderboard organization
|
9 |
#datasets = api.list_datasets(author="open-llm-leaderboard")
|
@@ -38,8 +41,48 @@ def get_leaderboard_datasets():
|
|
38 |
return [
|
39 |
"ai2_arc",
|
40 |
"hellaswag",
|
41 |
-
"
|
42 |
"truthful_qa",
|
43 |
"winogrande",
|
44 |
"gsm8k"
|
45 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
from huggingface_hub import HfApi
|
5 |
from functools import lru_cache
|
6 |
|
7 |
|
8 |
def get_leaderboard_models():
|
9 |
+
#api = HfApi()
|
10 |
|
11 |
# List all datasets in the open-llm-leaderboard organization
|
12 |
#datasets = api.list_datasets(author="open-llm-leaderboard")
|
|
|
41 |
return [
|
42 |
"ai2_arc",
|
43 |
"hellaswag",
|
44 |
+
"mmlu_pro",
|
45 |
"truthful_qa",
|
46 |
"winogrande",
|
47 |
"gsm8k"
|
48 |
+
]
|
49 |
+
|
50 |
+
def filter_labels(doc):
|
51 |
+
labels = []
|
52 |
+
if "answer_index" in doc[0].keys():
|
53 |
+
for d in doc:
|
54 |
+
labels.append(int(d["answer_index"]))
|
55 |
+
else:
|
56 |
+
for d in doc:
|
57 |
+
if d["answer"] == "False":
|
58 |
+
labels.append(0)
|
59 |
+
elif d["answer"] == "True":
|
60 |
+
labels.append(1)
|
61 |
+
else:
|
62 |
+
raise ValueError("Invalid label")
|
63 |
+
|
64 |
+
def load_run_data(model_name, dataset_name):
|
65 |
+
try:
|
66 |
+
model_name = model_name.replace("/", "__")
|
67 |
+
|
68 |
+
data = datasets.load_dataset("open-llm-leaderboard/" + model_name + "-details",
|
69 |
+
name=model_name + "__leaderboard_" + dataset_name,
|
70 |
+
split="latest")
|
71 |
+
data = data.sort("doc_id")
|
72 |
+
data = data.to_dict()
|
73 |
+
|
74 |
+
# Get log probabilities for each response
|
75 |
+
log_probs = []
|
76 |
+
for resp in data["filtered_resps"]:
|
77 |
+
log_prob = np.array([float(option[0]) for option in resp])
|
78 |
+
log_probs.append(log_prob)
|
79 |
+
|
80 |
+
# Get ground truth labels
|
81 |
+
labels = filter_labels(data["doc"])
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
print(e)
|
85 |
+
log_probs = None
|
86 |
+
labels = None
|
87 |
+
|
88 |
+
return log_probs, labels
|
src/similarity.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataloading import load_run_data
|
2 |
+
from lmsim.metrics import Kappa_p
|
3 |
+
|
4 |
+
|
5 |
+
def compute_similarity(selected_model_a, selected_model_b, selected_dataset):
|
6 |
+
probs_a, gt_a = load_run_data(selected_model_a, selected_dataset)
|
7 |
+
probs_b, gt_b = load_run_data(selected_model_b, selected_dataset)
|
8 |
+
|
9 |
+
assert len(probs_a) == len(probs_b), "Models must have the same number of responses"
|
10 |
+
|
11 |
+
# Only keep responses where the ground truth is the same
|
12 |
+
output_a = []
|
13 |
+
output_b = []
|
14 |
+
gt = []
|
15 |
+
for i in range(len(probs_a)):
|
16 |
+
if gt_a == gt_b:
|
17 |
+
output_a.append(probs_a[i])
|
18 |
+
output_b.append(probs_b[i])
|
19 |
+
gt.append(gt_a[i])
|
20 |
+
|
21 |
+
# Placeholder similarity value
|
22 |
+
kappa_p = Kappa_p()
|
23 |
+
similarity = kappa_p.compute_k(output_a, output_b, gt)
|
24 |
+
|
25 |
+
return similarity
|