Spaces:
Running
Running
Joschka Strueber
commited on
Commit
·
0f7de99
1
Parent(s):
fc18b54
[Add, Ref] integrate similarity computation, fix one-hot for EC, add login option
Browse files- app.py +9 -10
- src/__pycache__/dataloading.cpython-311.pyc +0 -0
- src/dataloading.py +5 -8
- src/similarity.py +15 -10
app.py
CHANGED
@@ -1,17 +1,21 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
-
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
8 |
from huggingface_hub import login
|
9 |
|
|
|
|
|
|
|
10 |
# Set matplotlib backend for non-GUI environments
|
11 |
plt.switch_backend('Agg')
|
12 |
|
13 |
# Login to Hugging Face Hub
|
14 |
-
|
|
|
15 |
|
16 |
|
17 |
def create_heatmap(selected_models, selected_dataset, selected_metric):
|
@@ -20,13 +24,8 @@ def create_heatmap(selected_models, selected_dataset, selected_metric):
|
|
20 |
|
21 |
# Sort models and get short names
|
22 |
selected_models = sorted(selected_models)
|
23 |
-
selected_models_short = [model.split("/")[-1] for model in selected_models]
|
24 |
|
25 |
-
|
26 |
-
size = len(selected_models)
|
27 |
-
similarities = np.random.rand(size, size)
|
28 |
-
similarities = (similarities + similarities.T) / 2
|
29 |
-
similarities = np.round(similarities, 2)
|
30 |
|
31 |
# Create figure and heatmap using seaborn
|
32 |
plt.figure(figsize=(8, 6))
|
@@ -37,8 +36,8 @@ def create_heatmap(selected_models, selected_dataset, selected_metric):
|
|
37 |
cmap="viridis",
|
38 |
vmin=0,
|
39 |
vmax=1,
|
40 |
-
xticklabels=
|
41 |
-
yticklabels=
|
42 |
)
|
43 |
|
44 |
# Customize plot
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
|
|
8 |
from huggingface_hub import login
|
9 |
|
10 |
+
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
11 |
+
from src.similarity import load_data_and_compute_similarities
|
12 |
+
|
13 |
# Set matplotlib backend for non-GUI environments
|
14 |
plt.switch_backend('Agg')
|
15 |
|
16 |
# Login to Hugging Face Hub
|
17 |
+
token = os.getenv("HF_TOKEN")
|
18 |
+
login(token=token)
|
19 |
|
20 |
|
21 |
def create_heatmap(selected_models, selected_dataset, selected_metric):
|
|
|
24 |
|
25 |
# Sort models and get short names
|
26 |
selected_models = sorted(selected_models)
|
|
|
27 |
|
28 |
+
similarities = load_data_and_compute_similarities(selected_models, selected_dataset, selected_metric)
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Create figure and heatmap using seaborn
|
31 |
plt.figure(figsize=(8, 6))
|
|
|
36 |
cmap="viridis",
|
37 |
vmin=0,
|
38 |
vmax=1,
|
39 |
+
xticklabels=selected_models,
|
40 |
+
yticklabels=selected_models
|
41 |
)
|
42 |
|
43 |
# Customize plot
|
src/__pycache__/dataloading.cpython-311.pyc
ADDED
Binary file (5.8 kB). View file
|
|
src/dataloading.py
CHANGED
@@ -57,7 +57,7 @@ def filter_labels(doc):
|
|
57 |
labels = []
|
58 |
if "answer_index" in doc[0].keys():
|
59 |
for d in doc:
|
60 |
-
labels.append(
|
61 |
else:
|
62 |
for d in doc:
|
63 |
if d["answer"] == "False":
|
@@ -66,6 +66,7 @@ def filter_labels(doc):
|
|
66 |
labels.append(1)
|
67 |
else:
|
68 |
raise ValueError("Invalid label")
|
|
|
69 |
|
70 |
def load_run_data(model_name, dataset_name):
|
71 |
try:
|
@@ -94,10 +95,6 @@ def load_run_data(model_name, dataset_name):
|
|
94 |
return log_probs, labels
|
95 |
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
]
|
101 |
-
|
102 |
-
datasets = get_leaderboard_datasets(model_ids)
|
103 |
-
print(datasets)
|
|
|
57 |
labels = []
|
58 |
if "answer_index" in doc[0].keys():
|
59 |
for d in doc:
|
60 |
+
labels.append(d["answer_index"])
|
61 |
else:
|
62 |
for d in doc:
|
63 |
if d["answer"] == "False":
|
|
|
66 |
labels.append(1)
|
67 |
else:
|
68 |
raise ValueError("Invalid label")
|
69 |
+
return labels
|
70 |
|
71 |
def load_run_data(model_name, dataset_name):
|
72 |
try:
|
|
|
95 |
return log_probs, labels
|
96 |
|
97 |
|
98 |
+
|
99 |
+
|
100 |
+
|
|
|
|
|
|
|
|
src/similarity.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import numpy as np
|
2 |
|
3 |
-
from
|
4 |
-
from lmsim.metrics import
|
5 |
|
6 |
|
7 |
-
|
8 |
-
def load_data_and_compute_similarities(models, dataset, metric_name):
|
9 |
# Load data
|
10 |
probs = []
|
11 |
gts = []
|
@@ -15,11 +14,11 @@ def load_data_and_compute_similarities(models, dataset, metric_name):
|
|
15 |
gts.append(model_gt)
|
16 |
|
17 |
# Compute pairwise similarities
|
18 |
-
similarities = compute_pairwise_similarities(probs, gts
|
19 |
return similarities
|
20 |
|
21 |
|
22 |
-
def compute_similarity(metric:
|
23 |
# Check that the models have the same number of responses
|
24 |
assert len(probs_a) == len(probs_b), f"Models must have the same number of responses: {len(probs_a)} != {len(probs_b)}"
|
25 |
|
@@ -44,16 +43,22 @@ def compute_pairwise_similarities(metric_name: str, probs: list[list[np.array]],
|
|
44 |
if metric_name == "Kappa_p (prob.)":
|
45 |
metric = Kappa_p()
|
46 |
elif metric_name == "Kappa_p (det.)":
|
47 |
-
metric = Kappa_p()
|
|
|
|
|
48 |
elif metric_name == "Error Consistency":
|
49 |
metric = EC()
|
50 |
else:
|
51 |
-
raise ValueError(f"Invalid metric: {metric_name}")
|
52 |
-
|
53 |
|
54 |
similarities = np.zeros((len(probs), len(probs)))
|
55 |
for i in range(len(probs)):
|
56 |
for j in range(i, len(probs)):
|
57 |
similarities[i, j] = compute_similarity(metric, probs[i], gts[i], probs[j], gts[j])
|
58 |
similarities[j, i] = similarities[i, j]
|
59 |
-
return similarities
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
|
3 |
+
from dataloading import load_run_data, get_leaderboard_datasets
|
4 |
+
from lmsim.metrics import Metrics, Kappa_p, EC
|
5 |
|
6 |
|
7 |
+
def load_data_and_compute_similarities(models: list[str], dataset: str, metric_name: str) -> np.array:
|
|
|
8 |
# Load data
|
9 |
probs = []
|
10 |
gts = []
|
|
|
14 |
gts.append(model_gt)
|
15 |
|
16 |
# Compute pairwise similarities
|
17 |
+
similarities = compute_pairwise_similarities(metric_name, probs, gts)
|
18 |
return similarities
|
19 |
|
20 |
|
21 |
+
def compute_similarity(metric: Metrics, probs_a: list[np.array], gt_a: list[int], probs_b: list[np.array], gt_b: list[int]) -> float:
|
22 |
# Check that the models have the same number of responses
|
23 |
assert len(probs_a) == len(probs_b), f"Models must have the same number of responses: {len(probs_a)} != {len(probs_b)}"
|
24 |
|
|
|
43 |
if metric_name == "Kappa_p (prob.)":
|
44 |
metric = Kappa_p()
|
45 |
elif metric_name == "Kappa_p (det.)":
|
46 |
+
metric = Kappa_p(prob=False)
|
47 |
+
# Convert probabilities to one-hot
|
48 |
+
probs = [[one_hot(p) for p in model_probs] for model_probs in probs]
|
49 |
elif metric_name == "Error Consistency":
|
50 |
metric = EC()
|
51 |
else:
|
52 |
+
raise ValueError(f"Invalid metric: {metric_name}")
|
|
|
53 |
|
54 |
similarities = np.zeros((len(probs), len(probs)))
|
55 |
for i in range(len(probs)):
|
56 |
for j in range(i, len(probs)):
|
57 |
similarities[i, j] = compute_similarity(metric, probs[i], gts[i], probs[j], gts[j])
|
58 |
similarities[j, i] = similarities[i, j]
|
59 |
+
return similarities
|
60 |
+
|
61 |
+
def one_hot(probs: np.array) -> np.array:
|
62 |
+
one_hot = np.zeros_like(probs)
|
63 |
+
one_hot[np.argmax(probs)] = 1
|
64 |
+
return one_hot
|