Spaces:
Sleeping
Sleeping
File size: 9,454 Bytes
507cd9a cf21eaf 8d70a49 507cd9a 538fbd6 507cd9a 8d70a49 507cd9a cbc96c3 507cd9a cbc96c3 507cd9a 8d70a49 538fbd6 8d70a49 538fbd6 8d70a49 cbc96c3 e5abf1b 8d70a49 e593c27 cbc96c3 538fbd6 507cd9a e5abf1b cbc96c3 e5abf1b cbc96c3 507cd9a 8d70a49 507cd9a 538fbd6 507cd9a 8d70a49 507cd9a e5abf1b 8d70a49 5490f47 507cd9a 5490f47 8d70a49 507cd9a 8d70a49 e593c27 507cd9a 8d70a49 507cd9a 8ce60c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import io
import hashlib
import logging
import aiohttp
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
# from transformers import AutoImageProcessor, ViTForImageClassification
from transformers import pipeline
from transformers.pipelines import PipelineException
from PIL import Image
from cachetools import Cache
import torch
import torch.nn.functional as F
from models import (
FileImageDetectionResponse,
UrlImageDetectionResponse,
ImageUrlsRequest,
ImageUrlRequest,
)
app = FastAPI()
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Initialize Cache with no TTL
cache = Cache(maxsize=1000)
# Load the model using the transformers pipeline
model = pipeline("image-classification", model="aznasut/ai_vs_fake_image")
#model = pipeline("image-classification", model="NYUAD-ComNets/AI-generated_images_detector")
# image_processor = AutoImageProcessor.from_pretrained("dima806/deepfake_vs_real_image_detection")
# model = ViTForImageClassification.from_pretrained("dima806/deepfake_vs_real_image_detection")
#model.save_pretrained("./SavedModel")
# Detect the device used by TensorFlow
# DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
# logging.info("TensorFlow version: %s", tf.__version__)
# logging.info("Model is using: %s", DEVICE)
# if DEVICE == "GPU":
# logging.info("GPUs available: %d", len(tf.config.list_physical_devices("GPU")))
async def download_image(image_url: str) -> bytes:
"""Download an image from a URL."""
async with aiohttp.ClientSession() as session:
async with session.get(image_url) as response:
if response.status != 200:
raise HTTPException(
status_code=response.status, detail="Image could not be retrieved."
)
return await response.read()
def hash_data(data):
"""Function for hashing image data."""
return hashlib.sha256(data).hexdigest()
@app.post("/v1/detect", response_model=FileImageDetectionResponse)
async def classify_image(file: UploadFile = File(None)):
"""Function analyzing image."""
if file is None:
raise HTTPException(
status_code=400,
detail="An image file must be provided.",
)
try:
logging.info("Processing %s", file.filename)
# Read the image file
image_data = await file.read()
image_hash = hash_data(image_data)
if image_hash in cache:
# Return cached entry
logging.info("Returning cached entry for %s", file.filename)
cached_response = cache[image_hash]
response_data = {**cached_response, "file_name": file.filename}
return FileImageDetectionResponse(**response_data)
image = Image.open(io.BytesIO(image_data))
# inputs = image_processor(image, return_tensors="pt")
inputs = model(image)
logging.info("inputs %s", inputs)
predicted_label = max(inputs, key=lambda x: x["score"])
confidence = round(predicted_label["score"] * 100, 1)
# # Prepare the custom response data
response_data = {
# "prediction": predicted_label,
"prediction": predicted_label["label"],
"confidence": str(confidence),
}
# Populate hash
cache[image_hash] = response_data.copy()
# Add url to the API response
response_data["file_name"] = file.filename
return FileImageDetectionResponse(**response_data)
# except Exception as e:
except PipelineException as e:
logging.error("Error processing image: %s", str(e))
raise HTTPException(
status_code=500, detail=f"Error processing image: {str(e)}"
) from e
@app.post("/v1/detect/url", response_model=UrlImageDetectionResponse)
async def classify_images(request: ImageUrlRequest):
try:
image_url = request.url
logging.info("Downloading image from URL: %s", image_url)
image_data = await download_image(image_url)
image_hash = hash_data(image_data)
if image_hash in cache:
# Return cached entry
logging.info("Returning cached entry for %s", image_url)
cached_response = cache[image_hash]
response_data = {**cached_response, "url": image_url}
return UrlImageDetectionResponse(**response_data)
image = Image.open(io.BytesIO(image_data))
# inputs = image_processor(image, return_tensors="pt")
inputs = model(image)
predicted_label = max(inputs, key=lambda x: x["score"])
confidence = round(predicted_label["score"] * 100, 1)
response_data = {
"prediction": predicted_label["label"],
"confidence": str(confidence),
}
# Populate hash
cache[image_hash] = response_data.copy()
# Add url to the API response
response_data["url"] = image_url
return UrlImageDetectionResponse(**response_data)
# except Exception as e:
except PipelineException as e:
logging.error("Error processing image from %s: %s", image_url, str(e))
raise HTTPException(
status_code=500,
detail=f"Error processing image from {image_url}: {str(e)}",
) from e
@app.post("/v1/detect/urls", response_model=list[UrlImageDetectionResponse])
async def classify_images(request: ImageUrlsRequest):
"""Function analyzing images from URLs."""
response_data = []
for image_url in request.urls:
try:
logging.info("Downloading image from URL: %s", image_url)
image_data = await download_image(image_url)
image_hash = hash_data(image_data)
if image_hash in cache:
# Return cached entry
logging.info("Returning cached entry for %s", image_url)
cached_response = cache[image_hash]
response = {**cached_response, "url": image_url}
response_data.append(response)
continue
image = Image.open(io.BytesIO(image_data))
# inputs = image_processor(image, return_tensors="pt")
inputs = model(image)
# with torch.no_grad():
# outpus = model(**inputs)
# logits = outpus.logits
# logging.info("logits %s", logits)
# probs = F.softmax(logits, dim=-1)
# logging.info("probs %s", probs)
# predicted_label_id = probs.argmax(-1).item()
# logging.info("predicted_label_id %s", predicted_label_id)
# predicted_label = model.config.id2label[predicted_label_id]
# logging.info("model.config.id2label %s", model.config.id2label)
# confidence = probs.max().item()
# model predicts one of the 1000 ImageNet classes
# predicted_label = logits.argmax(-1).item()
# logging.info("predicted_label", predicted_label)
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
# # print(model.config.id2label[predicted_label])
# logging.info("inputs %s", inputs)
predicted_label = max(inputs, key=lambda x: x["score"])
# best_prediction = max(results, key=lambda x: x["score"])
# logging.info("best_prediction %s", best_prediction)
# best_prediction2 = results[1]["label"]
# logging.info("best_prediction2 %s", best_prediction2)
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
# confidence_percentage = round(best_prediction["score"] * 100, 1)
confidence = round(predicted_label["score"] * 100, 1)
# # Prepare the custom response data
detection_result = {
# "prediction": predicted_label,
"prediction": predicted_label["label"],
"confidence": str(confidence),
}
# Use the model to classify the image
# results = model(image)
# Find the prediction with the highest confidence using the max() function
# best_prediction = max(results, key=lambda x: x["score"])
# Calculate the confidence score, rounded to the nearest tenth and as a percentage
# confidence_percentage = round(best_prediction["score"] * 100, 1)
# Prepare the custom response data
# detection_result = {
# "is_nsfw": best_prediction["label"] == "nsfw",
# "confidence_percentage": confidence_percentage,
# }
# Populate hash
cache[image_hash] = detection_result.copy()
# Add url to the API response
detection_result["url"] = image_url
response_data.append(detection_result)
# except Exception as e:
except PipelineException as e:
logging.error("Error processing image from %s: %s", image_url, str(e))
raise HTTPException(
status_code=500,
detail=f"Error processing image from {image_url}: {str(e)}",
) from e
return JSONResponse(status_code=200, content=response_data)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|