Spaces:
Sleeping
Sleeping
Add application file
Browse files- .gitignore +160 -0
- Dockerfile +25 -0
- main.py +224 -0
- models.py +49 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.12-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system dependencies
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
gcc \
|
10 |
+
build-essential \
|
11 |
+
pkg-config \
|
12 |
+
libhdf5-dev \
|
13 |
+
&& rm -rf /var/lib/apt/lists/*
|
14 |
+
|
15 |
+
# Copy the current directory contents into the container at /app
|
16 |
+
COPY . /app
|
17 |
+
|
18 |
+
# Install any needed packages specified in requirements.txt
|
19 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
20 |
+
|
21 |
+
# Make port 8000 available to the world outside this container
|
22 |
+
EXPOSE 8000
|
23 |
+
|
24 |
+
# Command to run the Uvicorn server
|
25 |
+
CMD ["uvicorn", "main:app", "--host", "localhost", "--port", "8000"]
|
main.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module providing an API for NSFW image detection."""
|
2 |
+
|
3 |
+
import io
|
4 |
+
import hashlib
|
5 |
+
import logging
|
6 |
+
import aiohttp
|
7 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
8 |
+
from fastapi.responses import JSONResponse
|
9 |
+
from transformers import pipeline
|
10 |
+
from transformers.pipelines import PipelineException
|
11 |
+
from transformers import AutoImageProcessor, ViTForImageClassification
|
12 |
+
from PIL import Image
|
13 |
+
from cachetools import Cache
|
14 |
+
import tensorflow as tf
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from models import (
|
18 |
+
FileImageDetectionResponse,
|
19 |
+
UrlImageDetectionResponse,
|
20 |
+
ImageUrlsRequest,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
app = FastAPI()
|
25 |
+
|
26 |
+
logging.basicConfig(
|
27 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
28 |
+
)
|
29 |
+
|
30 |
+
# Initialize Cache with no TTL
|
31 |
+
cache = Cache(maxsize=1000)
|
32 |
+
|
33 |
+
# Load the model using the transformers pipeline
|
34 |
+
# model = pipeline("image-classification", model="Wvolf/ViT_Deepfake_Detection")
|
35 |
+
|
36 |
+
# Detect the device used by TensorFlow
|
37 |
+
DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
|
38 |
+
logging.info("TensorFlow version: %s", tf.__version__)
|
39 |
+
logging.info("Model is using: %s", DEVICE)
|
40 |
+
|
41 |
+
if DEVICE == "GPU":
|
42 |
+
logging.info("GPUs available: %d", len(tf.config.list_physical_devices("GPU")))
|
43 |
+
|
44 |
+
|
45 |
+
async def download_image(image_url: str) -> bytes:
|
46 |
+
"""Download an image from a URL."""
|
47 |
+
async with aiohttp.ClientSession() as session:
|
48 |
+
async with session.get(image_url) as response:
|
49 |
+
if response.status != 200:
|
50 |
+
raise HTTPException(
|
51 |
+
status_code=response.status, detail="Image could not be retrieved."
|
52 |
+
)
|
53 |
+
return await response.read()
|
54 |
+
|
55 |
+
|
56 |
+
def hash_data(data):
|
57 |
+
"""Function for hashing image data."""
|
58 |
+
return hashlib.sha256(data).hexdigest()
|
59 |
+
|
60 |
+
|
61 |
+
@app.post("/v1/detect", response_model=FileImageDetectionResponse)
|
62 |
+
async def classify_image(file: UploadFile = File(None)):
|
63 |
+
"""Function analyzing image."""
|
64 |
+
if file is None:
|
65 |
+
raise HTTPException(
|
66 |
+
status_code=400,
|
67 |
+
detail="An image file must be provided.",
|
68 |
+
)
|
69 |
+
|
70 |
+
try:
|
71 |
+
logging.info("Processing %s", file.filename)
|
72 |
+
|
73 |
+
# Read the image file
|
74 |
+
image_data = await file.read()
|
75 |
+
image_hash = hash_data(image_data)
|
76 |
+
|
77 |
+
if image_hash in cache:
|
78 |
+
# Return cached entry
|
79 |
+
logging.info("Returning cached entry for %s", file.filename)
|
80 |
+
|
81 |
+
cached_response = cache[image_hash]
|
82 |
+
response_data = {**cached_response, "file_name": file.filename}
|
83 |
+
|
84 |
+
return FileImageDetectionResponse(**response_data)
|
85 |
+
|
86 |
+
image = Image.open(io.BytesIO(image_data))
|
87 |
+
|
88 |
+
# Use the model to classify the image
|
89 |
+
# results = model(image)
|
90 |
+
|
91 |
+
image_processor = AutoImageProcessor.from_pretrained("dima806/ai_vs_real_image_detection")
|
92 |
+
model = ViTForImageClassification.from_pretrained("dima806/ai_vs_real_image_detection")
|
93 |
+
|
94 |
+
inputs = image_processor(image, return_tensors="pt")
|
95 |
+
|
96 |
+
with torch.no_grad():
|
97 |
+
logits = model(**inputs).logits
|
98 |
+
|
99 |
+
# model predicts one of the 1000 ImageNet classes
|
100 |
+
predicted_label = logits.argmax(-1).item()
|
101 |
+
logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
102 |
+
# print(model.config.id2label[predicted_label])
|
103 |
+
# Find the prediction with the highest confidence using the max() function
|
104 |
+
# best_prediction = max(results, key=lambda x: x["score"])
|
105 |
+
# logging.info("best_prediction %s", best_prediction)
|
106 |
+
# best_prediction2 = results[1]["label"]
|
107 |
+
# logging.info("best_prediction2 %s", best_prediction2)
|
108 |
+
|
109 |
+
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
110 |
+
# confidence_percentage = round(best_prediction["score"] * 100, 1)
|
111 |
+
|
112 |
+
# # Prepare the custom response data
|
113 |
+
response_data = {
|
114 |
+
"prediction": model.config.id2label[predicted_label],
|
115 |
+
"confidence_percentage":model.config.id2label[predicted_label],
|
116 |
+
}
|
117 |
+
|
118 |
+
# Populate hash
|
119 |
+
cache[image_hash] = response_data.copy()
|
120 |
+
|
121 |
+
# Add file_name to the API response
|
122 |
+
response_data["file_name"] = file.filename
|
123 |
+
|
124 |
+
return FileImageDetectionResponse(**response_data)
|
125 |
+
|
126 |
+
except PipelineException as e:
|
127 |
+
logging.error("Error processing image: %s", str(e))
|
128 |
+
raise HTTPException(
|
129 |
+
status_code=500, detail=f"Error processing image: {str(e)}"
|
130 |
+
) from e
|
131 |
+
|
132 |
+
|
133 |
+
@app.post("/v1/detect/urls", response_model=list[UrlImageDetectionResponse])
|
134 |
+
async def classify_images(request: ImageUrlsRequest):
|
135 |
+
"""Function analyzing images from URLs."""
|
136 |
+
response_data = []
|
137 |
+
|
138 |
+
for image_url in request.urls:
|
139 |
+
try:
|
140 |
+
logging.info("Downloading image from URL: %s", image_url)
|
141 |
+
image_data = await download_image(image_url)
|
142 |
+
image_hash = hash_data(image_data)
|
143 |
+
|
144 |
+
if image_hash in cache:
|
145 |
+
# Return cached entry
|
146 |
+
logging.info("Returning cached entry for %s", image_url)
|
147 |
+
|
148 |
+
cached_response = cache[image_hash]
|
149 |
+
response = {**cached_response, "url": image_url}
|
150 |
+
|
151 |
+
response_data.append(response)
|
152 |
+
continue
|
153 |
+
|
154 |
+
image = Image.open(io.BytesIO(image_data))
|
155 |
+
image_processor = AutoImageProcessor.from_pretrained("Wvolf/ViT_Deepfake_Detection")
|
156 |
+
model = ViTForImageClassification.from_pretrained("Wvolf/ViT_Deepfake_Detection")
|
157 |
+
inputs = image_processor(image, return_tensors="pt")
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
logits = model(**inputs).logits
|
161 |
+
probs = F.softmax(logits, dim=-1)
|
162 |
+
predicted_label_id = probs.argmax(-1).item()
|
163 |
+
predicted_label = model.config.id2label[predicted_label_id]
|
164 |
+
confidence = probs.max().item()
|
165 |
+
|
166 |
+
# model predicts one of the 1000 ImageNet classes
|
167 |
+
# predicted_label = logits.argmax(-1).item()
|
168 |
+
# logging.info("predicted_label", predicted_label)
|
169 |
+
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
170 |
+
# # print(model.config.id2label[predicted_label])
|
171 |
+
# Find the prediction with the highest confidence using the max() function
|
172 |
+
# best_prediction = max(results, key=lambda x: x["score"])
|
173 |
+
# logging.info("best_prediction %s", best_prediction)
|
174 |
+
# best_prediction2 = results[1]["label"]
|
175 |
+
# logging.info("best_prediction2 %s", best_prediction2)
|
176 |
+
|
177 |
+
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
178 |
+
# confidence_percentage = round(best_prediction["score"] * 100, 1)
|
179 |
+
|
180 |
+
# # Prepare the custom response data
|
181 |
+
detection_result = {
|
182 |
+
"prediction": predicted_label,
|
183 |
+
"confidence_percentage":confidence,
|
184 |
+
}
|
185 |
+
# Use the model to classify the image
|
186 |
+
# results = model(image)
|
187 |
+
|
188 |
+
# Find the prediction with the highest confidence using the max() function
|
189 |
+
# best_prediction = max(results, key=lambda x: x["score"])
|
190 |
+
|
191 |
+
# Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
192 |
+
# confidence_percentage = round(best_prediction["score"] * 100, 1)
|
193 |
+
|
194 |
+
# Prepare the custom response data
|
195 |
+
# detection_result = {
|
196 |
+
# "is_nsfw": best_prediction["label"] == "nsfw",
|
197 |
+
# "confidence_percentage": confidence_percentage,
|
198 |
+
# }
|
199 |
+
|
200 |
+
# Populate hash
|
201 |
+
cache[image_hash] = detection_result.copy()
|
202 |
+
|
203 |
+
# Add url to the API response
|
204 |
+
detection_result["url"] = image_url
|
205 |
+
|
206 |
+
response_data.append(detection_result)
|
207 |
+
|
208 |
+
except PipelineException as e:
|
209 |
+
logging.error("Error processing image from %s: %s", image_url, str(e))
|
210 |
+
raise HTTPException(
|
211 |
+
status_code=500,
|
212 |
+
detail=f"Error processing image from {image_url}: {str(e)}",
|
213 |
+
) from e
|
214 |
+
|
215 |
+
return JSONResponse(status_code=200, content=response_data)
|
216 |
+
|
217 |
+
@app.get("/hello")
|
218 |
+
async def hello_world():
|
219 |
+
return {"message": "hello_world"}
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
import uvicorn
|
223 |
+
|
224 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|
models.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module providing base models."""
|
2 |
+
|
3 |
+
from pydantic import BaseModel
|
4 |
+
|
5 |
+
|
6 |
+
class ImageUrlsRequest(BaseModel):
|
7 |
+
"""
|
8 |
+
Model representing the request body for the /v1/detect/urls endpoint.
|
9 |
+
|
10 |
+
Attributes:
|
11 |
+
urls (list[str]): List of image URLs to be processed.
|
12 |
+
"""
|
13 |
+
|
14 |
+
urls: list[str]
|
15 |
+
|
16 |
+
|
17 |
+
class ImageDetectionResponse(BaseModel):
|
18 |
+
"""
|
19 |
+
Base model representing the response body for image detection.
|
20 |
+
|
21 |
+
Attributes:
|
22 |
+
is_nsfw (bool): Whether the image is classified as NSFW.
|
23 |
+
confidence_percentage (float): Confidence level of the NSFW classification.
|
24 |
+
"""
|
25 |
+
|
26 |
+
is_nsfw: bool
|
27 |
+
confidence_percentage: float
|
28 |
+
|
29 |
+
|
30 |
+
class FileImageDetectionResponse(ImageDetectionResponse):
|
31 |
+
"""
|
32 |
+
Model extending ImageDetectionResponse with a file attribute.
|
33 |
+
|
34 |
+
Attributes:
|
35 |
+
file (str): The name of the file that was processed.
|
36 |
+
"""
|
37 |
+
|
38 |
+
file_name: str
|
39 |
+
|
40 |
+
|
41 |
+
class UrlImageDetectionResponse(ImageDetectionResponse):
|
42 |
+
"""
|
43 |
+
Model extending ImageDetectionResponse with a URL attribute.
|
44 |
+
|
45 |
+
Attributes:
|
46 |
+
url (str): The URL of the image that was processed.
|
47 |
+
"""
|
48 |
+
|
49 |
+
url: str
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.110.2
|
2 |
+
uvicorn[standard]==0.29.0
|
3 |
+
transformers==4.40.0
|
4 |
+
aiohttp==3.9.5
|
5 |
+
pillow==10.3.0
|
6 |
+
python-multipart==0.0.9
|
7 |
+
tensorflow==2.16.1
|
8 |
+
tf-keras==2.16.0
|
9 |
+
cachetools===5.3.3
|
10 |
+
pydantic===2.7.2
|