Spaces:
Sleeping
Sleeping
fix v1/detect
Browse files
main.py
CHANGED
@@ -5,9 +5,9 @@ import aiohttp
|
|
5 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
|
8 |
-
|
9 |
-
from transformers import pipeline
|
10 |
-
from transformers.pipelines import PipelineException
|
11 |
from PIL import Image
|
12 |
from cachetools import Cache
|
13 |
import torch
|
@@ -27,10 +27,9 @@ logging.basicConfig(
|
|
27 |
cache = Cache(maxsize=1000)
|
28 |
|
29 |
# Load the model using the transformers pipeline
|
30 |
-
model = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection")
|
31 |
-
|
32 |
-
|
33 |
-
# model = ViTForImageClassification.from_pretrained("Wvolf/ViT_Deepfake_Detection")
|
34 |
|
35 |
# Detect the device used by TensorFlow
|
36 |
# DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
|
@@ -84,16 +83,26 @@ async def classify_image(file: UploadFile = File(None)):
|
|
84 |
|
85 |
image = Image.open(io.BytesIO(image_data))
|
86 |
|
87 |
-
|
88 |
-
inputs = model(image)
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# model predicts one of the 1000 ImageNet classes
|
99 |
# predicted_label = logits.argmax(-1).item()
|
@@ -101,16 +110,16 @@ async def classify_image(file: UploadFile = File(None)):
|
|
101 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
102 |
# # print(model.config.id2label[predicted_label])
|
103 |
# Find the prediction with the highest confidence using the max() function
|
104 |
-
predicted_label = max(inputs, key=lambda x: x["score"])
|
105 |
# logging.info("best_prediction %s", best_prediction)
|
106 |
# best_prediction2 = results[1]["label"]
|
107 |
# logging.info("best_prediction2 %s", best_prediction2)
|
108 |
|
109 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
110 |
-
confidence = round(predicted_label["score"] * 100, 1)
|
111 |
|
112 |
# # Prepare the custom response data
|
113 |
-
|
114 |
"prediction": predicted_label,
|
115 |
"confidence":confidence,
|
116 |
}
|
@@ -130,20 +139,20 @@ async def classify_image(file: UploadFile = File(None)):
|
|
130 |
# }
|
131 |
|
132 |
# Populate hash
|
133 |
-
cache[image_hash] =
|
134 |
|
135 |
# Add url to the API response
|
136 |
-
|
137 |
|
138 |
-
response_data.append(detection_result)
|
139 |
|
140 |
# Add file_name to the API response
|
141 |
-
response_data["file_name"] = file.filename
|
142 |
|
143 |
return FileImageDetectionResponse(**response_data)
|
144 |
|
145 |
-
|
146 |
-
except PipelineException as e:
|
147 |
logging.error("Error processing image: %s", str(e))
|
148 |
raise HTTPException(
|
149 |
status_code=500, detail=f"Error processing image: {str(e)}"
|
@@ -172,29 +181,29 @@ async def classify_images(request: ImageUrlsRequest):
|
|
172 |
continue
|
173 |
|
174 |
image = Image.open(io.BytesIO(image_data))
|
175 |
-
|
176 |
-
inputs = model(image)
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
|
191 |
# model predicts one of the 1000 ImageNet classes
|
192 |
# predicted_label = logits.argmax(-1).item()
|
193 |
# logging.info("predicted_label", predicted_label)
|
194 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
195 |
# # print(model.config.id2label[predicted_label])
|
196 |
-
logging.info("inputs %s", inputs)
|
197 |
-
predicted_label = max(inputs, key=lambda x: x["score"])
|
198 |
# best_prediction = max(results, key=lambda x: x["score"])
|
199 |
# logging.info("best_prediction %s", best_prediction)
|
200 |
# best_prediction2 = results[1]["label"]
|
@@ -202,7 +211,7 @@ async def classify_images(request: ImageUrlsRequest):
|
|
202 |
|
203 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
204 |
# confidence_percentage = round(best_prediction["score"] * 100, 1)
|
205 |
-
confidence = round(predicted_label["score"] * 100, 1)
|
206 |
|
207 |
# # Prepare the custom response data
|
208 |
detection_result = {
|
@@ -232,8 +241,8 @@ async def classify_images(request: ImageUrlsRequest):
|
|
232 |
|
233 |
response_data.append(detection_result)
|
234 |
|
235 |
-
|
236 |
-
except PipelineException as e:
|
237 |
logging.error("Error processing image from %s: %s", image_url, str(e))
|
238 |
raise HTTPException(
|
239 |
status_code=500,
|
|
|
5 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
|
8 |
+
from transformers import AutoImageProcessor, ViTForImageClassification
|
9 |
+
# from transformers import pipeline
|
10 |
+
# from transformers.pipelines import PipelineException
|
11 |
from PIL import Image
|
12 |
from cachetools import Cache
|
13 |
import torch
|
|
|
27 |
cache = Cache(maxsize=1000)
|
28 |
|
29 |
# Load the model using the transformers pipeline
|
30 |
+
# model = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection")
|
31 |
+
image_processor = AutoImageProcessor.from_pretrained("dima806/deepfake_vs_real_image_detection")
|
32 |
+
model = ViTForImageClassification.from_pretrained("dima806/deepfake_vs_real_image_detection")
|
|
|
33 |
|
34 |
# Detect the device used by TensorFlow
|
35 |
# DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
|
|
|
83 |
|
84 |
image = Image.open(io.BytesIO(image_data))
|
85 |
|
86 |
+
inputs = image_processor(image, return_tensors="pt")
|
87 |
+
# inputs = model(image)
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
outpus = model(**inputs)
|
91 |
+
logits = outpus.logits
|
92 |
+
logging.info("logits %s", logits)
|
93 |
+
probs = F.softmax(logits, dim=-1)
|
94 |
+
logging.info("probs %s", probs)
|
95 |
+
predicted_label_id = probs.argmax(-1).item()
|
96 |
+
logging.info("predicted_label_id %s", predicted_label_id)
|
97 |
+
predicted_label = model.config.id2label[predicted_label_id]
|
98 |
+
logging.info("model.config.id2label %s", model.config.id2label)
|
99 |
+
confidence = probs.max().item()
|
100 |
+
# outpus = model(**inputs)
|
101 |
+
# logits = outpus.logits
|
102 |
+
# probs = F.softmax(logits, dim=-1)
|
103 |
+
# predicted_label_id = probs.argmax(-1).item()
|
104 |
+
# predicted_label = model.config.id2label[predicted_label_id]
|
105 |
+
# confidence = probs.max().item()
|
106 |
|
107 |
# model predicts one of the 1000 ImageNet classes
|
108 |
# predicted_label = logits.argmax(-1).item()
|
|
|
110 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
111 |
# # print(model.config.id2label[predicted_label])
|
112 |
# Find the prediction with the highest confidence using the max() function
|
113 |
+
# predicted_label = max(inputs, key=lambda x: x["score"])
|
114 |
# logging.info("best_prediction %s", best_prediction)
|
115 |
# best_prediction2 = results[1]["label"]
|
116 |
# logging.info("best_prediction2 %s", best_prediction2)
|
117 |
|
118 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
119 |
+
# confidence = round(predicted_label["score"] * 100, 1)
|
120 |
|
121 |
# # Prepare the custom response data
|
122 |
+
response_data = {
|
123 |
"prediction": predicted_label,
|
124 |
"confidence":confidence,
|
125 |
}
|
|
|
139 |
# }
|
140 |
|
141 |
# Populate hash
|
142 |
+
cache[image_hash] = response_data.copy()
|
143 |
|
144 |
# Add url to the API response
|
145 |
+
response_data["file_name"] = file.filename
|
146 |
|
147 |
+
# response_data.append(detection_result)
|
148 |
|
149 |
# Add file_name to the API response
|
150 |
+
# response_data["file_name"] = file.filename
|
151 |
|
152 |
return FileImageDetectionResponse(**response_data)
|
153 |
|
154 |
+
except Exception as e:
|
155 |
+
# except PipelineException as e:
|
156 |
logging.error("Error processing image: %s", str(e))
|
157 |
raise HTTPException(
|
158 |
status_code=500, detail=f"Error processing image: {str(e)}"
|
|
|
181 |
continue
|
182 |
|
183 |
image = Image.open(io.BytesIO(image_data))
|
184 |
+
inputs = image_processor(image, return_tensors="pt")
|
185 |
+
# inputs = model(image)
|
186 |
+
|
187 |
+
|
188 |
+
with torch.no_grad():
|
189 |
+
outpus = model(**inputs)
|
190 |
+
logits = outpus.logits
|
191 |
+
logging.info("logits %s", logits)
|
192 |
+
probs = F.softmax(logits, dim=-1)
|
193 |
+
logging.info("probs %s", probs)
|
194 |
+
predicted_label_id = probs.argmax(-1).item()
|
195 |
+
logging.info("predicted_label_id %s", predicted_label_id)
|
196 |
+
predicted_label = model.config.id2label[predicted_label_id]
|
197 |
+
logging.info("model.config.id2label %s", model.config.id2label)
|
198 |
+
confidence = probs.max().item()
|
199 |
|
200 |
# model predicts one of the 1000 ImageNet classes
|
201 |
# predicted_label = logits.argmax(-1).item()
|
202 |
# logging.info("predicted_label", predicted_label)
|
203 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
204 |
# # print(model.config.id2label[predicted_label])
|
205 |
+
# logging.info("inputs %s", inputs)
|
206 |
+
# predicted_label = max(inputs, key=lambda x: x["score"])
|
207 |
# best_prediction = max(results, key=lambda x: x["score"])
|
208 |
# logging.info("best_prediction %s", best_prediction)
|
209 |
# best_prediction2 = results[1]["label"]
|
|
|
211 |
|
212 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
213 |
# confidence_percentage = round(best_prediction["score"] * 100, 1)
|
214 |
+
# confidence = round(predicted_label["score"] * 100, 1)
|
215 |
|
216 |
# # Prepare the custom response data
|
217 |
detection_result = {
|
|
|
241 |
|
242 |
response_data.append(detection_result)
|
243 |
|
244 |
+
except Exception as e:
|
245 |
+
# except PipelineException as e:
|
246 |
logging.error("Error processing image from %s: %s", image_url, str(e))
|
247 |
raise HTTPException(
|
248 |
status_code=500,
|
models.py
CHANGED
@@ -23,8 +23,8 @@ class ImageDetectionResponse(BaseModel):
|
|
23 |
confidence_percentage (float): Confidence level of the NSFW classification.
|
24 |
"""
|
25 |
|
26 |
-
|
27 |
-
|
28 |
|
29 |
|
30 |
class FileImageDetectionResponse(ImageDetectionResponse):
|
|
|
23 |
confidence_percentage (float): Confidence level of the NSFW classification.
|
24 |
"""
|
25 |
|
26 |
+
prediction: str
|
27 |
+
confidence: float
|
28 |
|
29 |
|
30 |
class FileImageDetectionResponse(ImageDetectionResponse):
|