aznasut commited on
Commit
5490f47
·
1 Parent(s): 9cf84ce

ignore temp files

Browse files
Files changed (1) hide show
  1. main.py +18 -17
main.py CHANGED
@@ -101,12 +101,12 @@ async def classify_image(file: UploadFile = File(None)):
101
 
102
  inputs = model(image)
103
 
104
- with torch.no_grad():
105
- logits = model(**inputs).logits
106
- probs = F.softmax(logits, dim=-1)
107
- predicted_label_id = probs.argmax(-1).item()
108
- predicted_label = model.config.id2label[predicted_label_id]
109
- confidence = probs.max().item()
110
 
111
  # model predicts one of the 1000 ImageNet classes
112
  # predicted_label = logits.argmax(-1).item()
@@ -114,13 +114,13 @@ async def classify_image(file: UploadFile = File(None)):
114
  # logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
115
  # # print(model.config.id2label[predicted_label])
116
  # Find the prediction with the highest confidence using the max() function
117
- # best_prediction = max(results, key=lambda x: x["score"])
118
  # logging.info("best_prediction %s", best_prediction)
119
  # best_prediction2 = results[1]["label"]
120
  # logging.info("best_prediction2 %s", best_prediction2)
121
 
122
  # # Calculate the confidence score, rounded to the nearest tenth and as a percentage
123
- # confidence_percentage = round(best_prediction["score"] * 100, 1)
124
 
125
  # # Prepare the custom response data
126
  detection_result = {
@@ -186,26 +186,27 @@ async def classify_images(request: ImageUrlsRequest):
186
  image = Image.open(io.BytesIO(image_data))
187
  inputs = model(image)
188
 
189
- with torch.no_grad():
190
- logits = model(**inputs).logits
191
- probs = F.softmax(logits, dim=-1)
192
- predicted_label_id = probs.argmax(-1).item()
193
- predicted_label = model.config.id2label[predicted_label_id]
194
- confidence = probs.max().item()
195
 
196
  # model predicts one of the 1000 ImageNet classes
197
  # predicted_label = logits.argmax(-1).item()
198
  # logging.info("predicted_label", predicted_label)
199
  # logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
200
  # # print(model.config.id2label[predicted_label])
201
- # Find the prediction with the highest confidence using the max() function
202
- # best_prediction = max(results, key=lambda x: x["score"])
203
  # logging.info("best_prediction %s", best_prediction)
204
  # best_prediction2 = results[1]["label"]
205
  # logging.info("best_prediction2 %s", best_prediction2)
206
 
207
  # # Calculate the confidence score, rounded to the nearest tenth and as a percentage
208
- # confidence_percentage = round(best_prediction["score"] * 100, 1)
 
209
 
210
  # # Prepare the custom response data
211
  detection_result = {
 
101
 
102
  inputs = model(image)
103
 
104
+ # with torch.no_grad():
105
+ # logits = model(**inputs).logits
106
+ # probs = F.softmax(logits, dim=-1)
107
+ # predicted_label_id = probs.argmax(-1).item()
108
+ # predicted_label = model.config.id2label[predicted_label_id]
109
+ # confidence = probs.max().item()
110
 
111
  # model predicts one of the 1000 ImageNet classes
112
  # predicted_label = logits.argmax(-1).item()
 
114
  # logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
115
  # # print(model.config.id2label[predicted_label])
116
  # Find the prediction with the highest confidence using the max() function
117
+ predicted_label = max(inputs, key=lambda x: x["score"])
118
  # logging.info("best_prediction %s", best_prediction)
119
  # best_prediction2 = results[1]["label"]
120
  # logging.info("best_prediction2 %s", best_prediction2)
121
 
122
  # # Calculate the confidence score, rounded to the nearest tenth and as a percentage
123
+ confidence = round(predicted_label["score"] * 100, 1)
124
 
125
  # # Prepare the custom response data
126
  detection_result = {
 
186
  image = Image.open(io.BytesIO(image_data))
187
  inputs = model(image)
188
 
189
+ # with torch.no_grad():
190
+ # logits = model(**inputs).logits
191
+ # probs = F.softmax(logits, dim=-1)
192
+ # predicted_label_id = probs.argmax(-1).item()
193
+ # predicted_label = model.config.id2label[predicted_label_id]
194
+ # confidence = probs.max().item()
195
 
196
  # model predicts one of the 1000 ImageNet classes
197
  # predicted_label = logits.argmax(-1).item()
198
  # logging.info("predicted_label", predicted_label)
199
  # logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
200
  # # print(model.config.id2label[predicted_label])
201
+ predicted_label = max(inputs, key=lambda x: x["score"])
202
+ # best_prediction = max(results, key=lambda x: x["score"])
203
  # logging.info("best_prediction %s", best_prediction)
204
  # best_prediction2 = results[1]["label"]
205
  # logging.info("best_prediction2 %s", best_prediction2)
206
 
207
  # # Calculate the confidence score, rounded to the nearest tenth and as a percentage
208
+ # confidence_percentage = round(best_prediction["score"] * 100, 1)
209
+ confidence = round(predicted_label["score"] * 100, 1)
210
 
211
  # # Prepare the custom response data
212
  detection_result = {