Spaces:
Sleeping
Sleeping
ignore temp files
Browse files
main.py
CHANGED
@@ -101,12 +101,12 @@ async def classify_image(file: UploadFile = File(None)):
|
|
101 |
|
102 |
inputs = model(image)
|
103 |
|
104 |
-
with torch.no_grad():
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
|
111 |
# model predicts one of the 1000 ImageNet classes
|
112 |
# predicted_label = logits.argmax(-1).item()
|
@@ -114,13 +114,13 @@ async def classify_image(file: UploadFile = File(None)):
|
|
114 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
115 |
# # print(model.config.id2label[predicted_label])
|
116 |
# Find the prediction with the highest confidence using the max() function
|
117 |
-
|
118 |
# logging.info("best_prediction %s", best_prediction)
|
119 |
# best_prediction2 = results[1]["label"]
|
120 |
# logging.info("best_prediction2 %s", best_prediction2)
|
121 |
|
122 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
123 |
-
|
124 |
|
125 |
# # Prepare the custom response data
|
126 |
detection_result = {
|
@@ -186,26 +186,27 @@ async def classify_images(request: ImageUrlsRequest):
|
|
186 |
image = Image.open(io.BytesIO(image_data))
|
187 |
inputs = model(image)
|
188 |
|
189 |
-
with torch.no_grad():
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
# model predicts one of the 1000 ImageNet classes
|
197 |
# predicted_label = logits.argmax(-1).item()
|
198 |
# logging.info("predicted_label", predicted_label)
|
199 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
200 |
# # print(model.config.id2label[predicted_label])
|
201 |
-
|
202 |
-
|
203 |
# logging.info("best_prediction %s", best_prediction)
|
204 |
# best_prediction2 = results[1]["label"]
|
205 |
# logging.info("best_prediction2 %s", best_prediction2)
|
206 |
|
207 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
208 |
-
|
|
|
209 |
|
210 |
# # Prepare the custom response data
|
211 |
detection_result = {
|
|
|
101 |
|
102 |
inputs = model(image)
|
103 |
|
104 |
+
# with torch.no_grad():
|
105 |
+
# logits = model(**inputs).logits
|
106 |
+
# probs = F.softmax(logits, dim=-1)
|
107 |
+
# predicted_label_id = probs.argmax(-1).item()
|
108 |
+
# predicted_label = model.config.id2label[predicted_label_id]
|
109 |
+
# confidence = probs.max().item()
|
110 |
|
111 |
# model predicts one of the 1000 ImageNet classes
|
112 |
# predicted_label = logits.argmax(-1).item()
|
|
|
114 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
115 |
# # print(model.config.id2label[predicted_label])
|
116 |
# Find the prediction with the highest confidence using the max() function
|
117 |
+
predicted_label = max(inputs, key=lambda x: x["score"])
|
118 |
# logging.info("best_prediction %s", best_prediction)
|
119 |
# best_prediction2 = results[1]["label"]
|
120 |
# logging.info("best_prediction2 %s", best_prediction2)
|
121 |
|
122 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
123 |
+
confidence = round(predicted_label["score"] * 100, 1)
|
124 |
|
125 |
# # Prepare the custom response data
|
126 |
detection_result = {
|
|
|
186 |
image = Image.open(io.BytesIO(image_data))
|
187 |
inputs = model(image)
|
188 |
|
189 |
+
# with torch.no_grad():
|
190 |
+
# logits = model(**inputs).logits
|
191 |
+
# probs = F.softmax(logits, dim=-1)
|
192 |
+
# predicted_label_id = probs.argmax(-1).item()
|
193 |
+
# predicted_label = model.config.id2label[predicted_label_id]
|
194 |
+
# confidence = probs.max().item()
|
195 |
|
196 |
# model predicts one of the 1000 ImageNet classes
|
197 |
# predicted_label = logits.argmax(-1).item()
|
198 |
# logging.info("predicted_label", predicted_label)
|
199 |
# logging.info("model.config.id2label[predicted_label] %s", model.config.id2label[predicted_label])
|
200 |
# # print(model.config.id2label[predicted_label])
|
201 |
+
predicted_label = max(inputs, key=lambda x: x["score"])
|
202 |
+
# best_prediction = max(results, key=lambda x: x["score"])
|
203 |
# logging.info("best_prediction %s", best_prediction)
|
204 |
# best_prediction2 = results[1]["label"]
|
205 |
# logging.info("best_prediction2 %s", best_prediction2)
|
206 |
|
207 |
# # Calculate the confidence score, rounded to the nearest tenth and as a percentage
|
208 |
+
# confidence_percentage = round(best_prediction["score"] * 100, 1)
|
209 |
+
confidence = round(predicted_label["score"] * 100, 1)
|
210 |
|
211 |
# # Prepare the custom response data
|
212 |
detection_result = {
|