File size: 5,431 Bytes
67c01ec
 
 
 
 
4e1519e
8427637
959152c
67c01ec
8427637
67c01ec
 
 
 
bdefc08
 
 
 
 
 
67c01ec
bdefc08
 
 
 
 
 
 
959152c
 
bdefc08
959152c
 
 
 
bdefc08
959152c
bdefc08
 
 
6afbfac
bdefc08
 
 
 
 
 
 
6afbfac
959152c
bdefc08
 
 
 
 
 
6afbfac
 
bdefc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8427637
bdefc08
 
959152c
bdefc08
 
 
959152c
bdefc08
 
 
6afbfac
959152c
bdefc08
 
8427637
 
bdefc08
6afbfac
 
bdefc08
6afbfac
bdefc08
 
6afbfac
bdefc08
 
 
959152c
bdefc08
 
 
 
 
 
 
 
 
 
8427637
bdefc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afbfac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import os
from datetime import datetime
from datasets import load_dataset

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'dataset_loaded' not in st.session_state:
    st.session_state['dataset_loaded'] = False
if 'current_page' not in st.session_state:
    st.session_state['current_page'] = 0
if 'data_cache' not in st.session_state:
    st.session_state['data_cache'] = None

ROWS_PER_PAGE = 100  # Number of rows to load at a time

@st.cache_resource
def get_model():
    return SentenceTransformer('all-MiniLM-L6-v2')

class FastDatasetSearcher:
    def __init__(self, dataset_id="tomg-group-umd/cinepile"):
        self.dataset_id = dataset_id
        self.text_model = get_model()
        self.token = os.environ.get('DATASET_KEY')
        if not self.token:
            st.error("Please set the DATASET_KEY environment variable with your Hugging Face token.")
            st.stop()
        self.load_dataset_info()

    @st.cache_data
    def load_dataset_info(self):
        """Load dataset metadata only"""
        try:
            dataset = load_dataset(
                self.dataset_id,
                token=self.token,
                streaming=True
            )
            self.dataset_info = dataset['train'].info
            return True
        except Exception as e:
            st.error(f"Error loading dataset: {str(e)}")
            return False

    def load_page(self, page=0):
        """Load a specific page of data"""
        if st.session_state['data_cache'] is not None and st.session_state['current_page'] == page:
            return st.session_state['data_cache']

        try:
            dataset = load_dataset(
                self.dataset_id,
                token=self.token,
                streaming=False,
                split=f'train[{page*ROWS_PER_PAGE}:{(page+1)*ROWS_PER_PAGE}]'
            )
            df = pd.DataFrame(dataset)
            st.session_state['data_cache'] = df
            st.session_state['current_page'] = page
            return df
        except Exception as e:
            st.error(f"Error loading page {page}: {str(e)}")
            return pd.DataFrame()

    def quick_search(self, query, df):
        """Fast search on current page"""
        scores = []
        query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
        
        for _, row in df.iterrows():
            # Combine all searchable text fields
            text = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
            
            # Quick keyword match
            keyword_score = text.lower().count(query.lower()) / len(text.split())
            
            # Semantic search on combined text
            text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
            semantic_score = cosine_similarity([query_embedding], [text_embedding])[0][0]
            
            # Combine scores
            combined_score = 0.5 * semantic_score + 0.5 * keyword_score
            scores.append(combined_score)
        
        # Get top results
        df['score'] = scores
        return df.sort_values('score', ascending=False)

def main():
    st.title("🎥 Fast Video Dataset Search")
    
    # Initialize search class
    searcher = FastDatasetSearcher()
    
    # Page navigation
    page = st.number_input("Page", min_value=0, value=st.session_state['current_page'])
    
    # Load current page
    with st.spinner(f"Loading page {page}..."):
        df = searcher.load_page(page)
    
    if df.empty:
        st.warning("No data available for this page.")
        return
    
    # Search interface
    query = st.text_input("Search in current page:", help="Searches within currently loaded data")
    
    if query:
        with st.spinner("Searching..."):
            results = searcher.quick_search(query, df)
            
            # Display results
            st.write(f"Found {len(results)} results on this page:")
            for i, (_, result) in enumerate(results.iterrows(), 1):
                score = result.pop('score')
                with st.expander(f"Result {i} (Score: {score:.2%})", expanded=i==1):
                    # Display video if available
                    if 'youtube_id' in result:
                        st.video(
                            f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}"
                        )
                    
                    # Display other fields
                    for key, value in result.items():
                        if isinstance(value, (str, int, float)):
                            st.write(f"**{key}:** {value}")
    
    # Show raw data
    st.subheader("Raw Data")
    st.dataframe(df)
    
    # Navigation buttons
    cols = st.columns(2)
    with cols[0]:
        if st.button("Previous Page") and page > 0:
            st.session_state['current_page'] -= 1
            st.rerun()
    with cols[1]:
        if st.button("Next Page"):
            st.session_state['current_page'] += 1
            st.rerun()

if __name__ == "__main__":
    main()