Update app.py
Browse files
app.py
CHANGED
@@ -5,284 +5,149 @@ from sentence_transformers import SentenceTransformer
|
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import os
|
7 |
from datetime import datetime
|
8 |
-
import requests
|
9 |
from datasets import load_dataset
|
10 |
-
from urllib.parse import quote
|
11 |
|
12 |
# Initialize session state
|
13 |
if 'search_history' not in st.session_state:
|
14 |
st.session_state['search_history'] = []
|
15 |
if 'search_columns' not in st.session_state:
|
16 |
st.session_state['search_columns'] = []
|
17 |
-
if '
|
18 |
-
st.session_state['
|
19 |
-
if '
|
20 |
-
st.session_state['
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
24 |
self.dataset_id = dataset_id
|
25 |
-
self.text_model =
|
26 |
self.token = os.environ.get('DATASET_KEY')
|
27 |
if not self.token:
|
28 |
st.error("Please set the DATASET_KEY environment variable with your Hugging Face token.")
|
29 |
st.stop()
|
30 |
-
self.
|
31 |
|
32 |
-
|
33 |
-
|
|
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
self.dataset = st.session_state['dataset']
|
44 |
-
# Convert first split to DataFrame for easier processing
|
45 |
-
first_split = next(iter(self.dataset.values()))
|
46 |
-
self.df = pd.DataFrame(first_split)
|
47 |
-
|
48 |
-
# Store column information
|
49 |
-
self.columns = list(self.df.columns)
|
50 |
-
# Identify searchable columns
|
51 |
-
self.text_columns = []
|
52 |
-
for col in self.columns:
|
53 |
-
if col.lower() not in ['embed', 'vector', 'encoding']:
|
54 |
-
sample_val = self.df[col].iloc[0] if not self.df.empty else None
|
55 |
-
if isinstance(sample_val, (str, int, float, list, dict)) or sample_val is None:
|
56 |
-
self.text_columns.append(col)
|
57 |
-
|
58 |
-
# Update session state columns
|
59 |
-
st.session_state['search_columns'] = self.text_columns
|
60 |
-
|
61 |
-
# Prepare text embeddings
|
62 |
-
self.prepare_features()
|
63 |
-
|
64 |
except Exception as e:
|
65 |
st.error(f"Error loading dataset: {str(e)}")
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
def prepare_features(self):
|
70 |
-
"""Prepare text embeddings for semantic search"""
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
batch = processed_texts[i:i+batch_size]
|
98 |
-
embeddings = self.text_model.encode(batch)
|
99 |
-
all_embeddings.append(embeddings)
|
100 |
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
def search(self, query, column=None, top_k=20):
|
108 |
-
"""Search the dataset using semantic and keyword matching"""
|
109 |
-
if self.df.empty:
|
110 |
-
return []
|
111 |
-
|
112 |
-
# Get semantic similarity scores
|
113 |
-
query_embedding = self.text_model.encode([query])[0]
|
114 |
-
similarities = cosine_similarity([query_embedding], self.text_embeddings)[0]
|
115 |
-
|
116 |
-
# Get keyword match scores
|
117 |
-
search_columns = [column] if column and column != "All Fields" else self.text_columns
|
118 |
-
keyword_scores = np.zeros(len(self.df))
|
119 |
-
|
120 |
-
query_lower = query.lower()
|
121 |
-
for col in search_columns:
|
122 |
-
if col in self.df.columns:
|
123 |
-
for idx, value in enumerate(self.df[col]):
|
124 |
-
if isinstance(value, (list, dict)):
|
125 |
-
# Search in string representation of lists or dicts
|
126 |
-
text = str(value).lower()
|
127 |
-
elif isinstance(value, (int, float)):
|
128 |
-
# Convert numbers to strings for searching
|
129 |
-
text = str(value).lower()
|
130 |
-
elif value is None:
|
131 |
-
text = ''
|
132 |
-
else:
|
133 |
-
# Handle string values
|
134 |
-
text = str(value).lower()
|
135 |
-
|
136 |
-
keyword_scores[idx] += text.count(query_lower)
|
137 |
-
|
138 |
-
# Combine scores
|
139 |
-
combined_scores = 0.5 * similarities + 0.5 * (keyword_scores / max(1, keyword_scores.max()))
|
140 |
|
141 |
# Get top results
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
# Format results
|
146 |
-
results = []
|
147 |
-
for idx in top_indices:
|
148 |
-
result = {
|
149 |
-
'relevance_score': float(combined_scores[idx]),
|
150 |
-
'semantic_score': float(similarities[idx]),
|
151 |
-
'keyword_score': float(keyword_scores[idx]),
|
152 |
-
**self.df.iloc[idx].to_dict()
|
153 |
-
}
|
154 |
-
results.append(result)
|
155 |
-
|
156 |
-
return results
|
157 |
-
|
158 |
-
def get_dataset_info(self):
|
159 |
-
"""Get information about the dataset"""
|
160 |
-
if not self.dataset:
|
161 |
-
return {}
|
162 |
-
|
163 |
-
info = {
|
164 |
-
'splits': list(self.dataset.keys()),
|
165 |
-
'total_rows': sum(split.num_rows for split in self.dataset.values()),
|
166 |
-
'columns': self.columns,
|
167 |
-
'text_columns': self.text_columns,
|
168 |
-
'sample_rows': len(self.df),
|
169 |
-
'embeddings_shape': self.text_embeddings.shape
|
170 |
-
}
|
171 |
-
|
172 |
-
return info
|
173 |
-
|
174 |
-
def render_video_result(result):
|
175 |
-
"""Render a video result with enhanced display"""
|
176 |
-
col1, col2 = st.columns([2, 1])
|
177 |
-
|
178 |
-
with col1:
|
179 |
-
if 'title' in result:
|
180 |
-
st.markdown(f"**Title:** {result['title']}")
|
181 |
-
if 'description' in result:
|
182 |
-
st.markdown("**Description:**")
|
183 |
-
st.write(result['description'])
|
184 |
-
|
185 |
-
# Show timing information if available
|
186 |
-
if 'start_time' in result and 'end_time' in result:
|
187 |
-
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
|
188 |
-
|
189 |
-
# Show additional metadata
|
190 |
-
for key, value in result.items():
|
191 |
-
if key not in ['title', 'description', 'start_time', 'end_time', 'duration',
|
192 |
-
'relevance_score', 'semantic_score', 'keyword_score',
|
193 |
-
'video_id', 'youtube_id']:
|
194 |
-
st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
|
195 |
-
|
196 |
-
with col2:
|
197 |
-
# Show search scores
|
198 |
-
st.markdown("**Search Scores:**")
|
199 |
-
cols = st.columns(3)
|
200 |
-
cols[0].metric("Overall", f"{result['relevance_score']:.2%}")
|
201 |
-
cols[1].metric("Semantic", f"{result['semantic_score']:.2%}")
|
202 |
-
cols[2].metric("Keyword", f"{result['keyword_score']:.0f} matches")
|
203 |
-
|
204 |
-
# Display video if available
|
205 |
-
if 'youtube_id' in result:
|
206 |
-
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
207 |
|
208 |
def main():
|
209 |
-
st.title("🎥 Video Dataset Search")
|
210 |
|
211 |
# Initialize search class
|
212 |
-
searcher =
|
213 |
|
214 |
-
#
|
215 |
-
|
216 |
|
217 |
-
#
|
218 |
-
with
|
219 |
-
|
220 |
-
col1, col2 = st.columns([3, 1])
|
221 |
-
|
222 |
-
with col1:
|
223 |
-
query = st.text_input("Search query:",
|
224 |
-
value="" if st.session_state['initial_search_done'] else "")
|
225 |
-
with col2:
|
226 |
-
search_column = st.selectbox("Search in field:",
|
227 |
-
["All Fields"] + st.session_state['search_columns'])
|
228 |
-
|
229 |
-
col3, col4 = st.columns(2)
|
230 |
-
with col3:
|
231 |
-
num_results = st.slider("Number of results:", 1, 100, 20)
|
232 |
-
with col4:
|
233 |
-
search_button = st.button("🔍 Search")
|
234 |
-
|
235 |
-
if search_button and query:
|
236 |
-
st.session_state['initial_search_done'] = True
|
237 |
-
selected_column = None if search_column == "All Fields" else search_column
|
238 |
-
|
239 |
-
with st.spinner("Searching..."):
|
240 |
-
results = searcher.search(query, selected_column, num_results)
|
241 |
-
|
242 |
-
st.session_state['search_history'].append({
|
243 |
-
'query': query,
|
244 |
-
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
245 |
-
'results': results[:5]
|
246 |
-
})
|
247 |
-
|
248 |
-
for i, result in enumerate(results, 1):
|
249 |
-
with st.expander(
|
250 |
-
f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...",
|
251 |
-
expanded=(i==1)
|
252 |
-
):
|
253 |
-
render_video_result(result)
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
st.write(f"- Searchable text columns: {', '.join(info['text_columns'])}")
|
266 |
-
|
267 |
-
st.write("### Sample Data")
|
268 |
-
st.dataframe(searcher.df.head())
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
if __name__ == "__main__":
|
288 |
main()
|
|
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import os
|
7 |
from datetime import datetime
|
|
|
8 |
from datasets import load_dataset
|
|
|
9 |
|
10 |
# Initialize session state
|
11 |
if 'search_history' not in st.session_state:
|
12 |
st.session_state['search_history'] = []
|
13 |
if 'search_columns' not in st.session_state:
|
14 |
st.session_state['search_columns'] = []
|
15 |
+
if 'dataset_loaded' not in st.session_state:
|
16 |
+
st.session_state['dataset_loaded'] = False
|
17 |
+
if 'current_page' not in st.session_state:
|
18 |
+
st.session_state['current_page'] = 0
|
19 |
+
if 'data_cache' not in st.session_state:
|
20 |
+
st.session_state['data_cache'] = None
|
21 |
|
22 |
+
ROWS_PER_PAGE = 100 # Number of rows to load at a time
|
23 |
+
|
24 |
+
@st.cache_resource
|
25 |
+
def get_model():
|
26 |
+
return SentenceTransformer('all-MiniLM-L6-v2')
|
27 |
+
|
28 |
+
class FastDatasetSearcher:
|
29 |
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
30 |
self.dataset_id = dataset_id
|
31 |
+
self.text_model = get_model()
|
32 |
self.token = os.environ.get('DATASET_KEY')
|
33 |
if not self.token:
|
34 |
st.error("Please set the DATASET_KEY environment variable with your Hugging Face token.")
|
35 |
st.stop()
|
36 |
+
self.load_dataset_info()
|
37 |
|
38 |
+
@st.cache_data
|
39 |
+
def load_dataset_info(self):
|
40 |
+
"""Load dataset metadata only"""
|
41 |
try:
|
42 |
+
dataset = load_dataset(
|
43 |
+
self.dataset_id,
|
44 |
+
token=self.token,
|
45 |
+
streaming=True
|
46 |
+
)
|
47 |
+
self.dataset_info = dataset['train'].info
|
48 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
st.error(f"Error loading dataset: {str(e)}")
|
51 |
+
return False
|
52 |
+
|
53 |
+
def load_page(self, page=0):
|
54 |
+
"""Load a specific page of data"""
|
55 |
+
if st.session_state['data_cache'] is not None and st.session_state['current_page'] == page:
|
56 |
+
return st.session_state['data_cache']
|
57 |
|
|
|
|
|
58 |
try:
|
59 |
+
dataset = load_dataset(
|
60 |
+
self.dataset_id,
|
61 |
+
token=self.token,
|
62 |
+
streaming=False,
|
63 |
+
split=f'train[{page*ROWS_PER_PAGE}:{(page+1)*ROWS_PER_PAGE}]'
|
64 |
+
)
|
65 |
+
df = pd.DataFrame(dataset)
|
66 |
+
st.session_state['data_cache'] = df
|
67 |
+
st.session_state['current_page'] = page
|
68 |
+
return df
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Error loading page {page}: {str(e)}")
|
71 |
+
return pd.DataFrame()
|
72 |
+
|
73 |
+
def quick_search(self, query, df):
|
74 |
+
"""Fast search on current page"""
|
75 |
+
scores = []
|
76 |
+
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
|
77 |
+
|
78 |
+
for _, row in df.iterrows():
|
79 |
+
# Combine all searchable text fields
|
80 |
+
text = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
|
81 |
|
82 |
+
# Quick keyword match
|
83 |
+
keyword_score = text.lower().count(query.lower()) / len(text.split())
|
|
|
|
|
|
|
84 |
|
85 |
+
# Semantic search on combined text
|
86 |
+
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
|
87 |
+
semantic_score = cosine_similarity([query_embedding], [text_embedding])[0][0]
|
88 |
|
89 |
+
# Combine scores
|
90 |
+
combined_score = 0.5 * semantic_score + 0.5 * keyword_score
|
91 |
+
scores.append(combined_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Get top results
|
94 |
+
df['score'] = scores
|
95 |
+
return df.sort_values('score', ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def main():
|
98 |
+
st.title("🎥 Fast Video Dataset Search")
|
99 |
|
100 |
# Initialize search class
|
101 |
+
searcher = FastDatasetSearcher()
|
102 |
|
103 |
+
# Page navigation
|
104 |
+
page = st.number_input("Page", min_value=0, value=st.session_state['current_page'])
|
105 |
|
106 |
+
# Load current page
|
107 |
+
with st.spinner(f"Loading page {page}..."):
|
108 |
+
df = searcher.load_page(page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
if df.empty:
|
111 |
+
st.warning("No data available for this page.")
|
112 |
+
return
|
113 |
+
|
114 |
+
# Search interface
|
115 |
+
query = st.text_input("Search in current page:", help="Searches within currently loaded data")
|
116 |
+
|
117 |
+
if query:
|
118 |
+
with st.spinner("Searching..."):
|
119 |
+
results = searcher.quick_search(query, df)
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Display results
|
122 |
+
st.write(f"Found {len(results)} results on this page:")
|
123 |
+
for i, (_, result) in enumerate(results.iterrows(), 1):
|
124 |
+
score = result.pop('score')
|
125 |
+
with st.expander(f"Result {i} (Score: {score:.2%})", expanded=i==1):
|
126 |
+
# Display video if available
|
127 |
+
if 'youtube_id' in result:
|
128 |
+
st.video(
|
129 |
+
f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}"
|
130 |
+
)
|
131 |
+
|
132 |
+
# Display other fields
|
133 |
+
for key, value in result.items():
|
134 |
+
if isinstance(value, (str, int, float)):
|
135 |
+
st.write(f"**{key}:** {value}")
|
136 |
+
|
137 |
+
# Show raw data
|
138 |
+
st.subheader("Raw Data")
|
139 |
+
st.dataframe(df)
|
140 |
+
|
141 |
+
# Navigation buttons
|
142 |
+
cols = st.columns(2)
|
143 |
+
with cols[0]:
|
144 |
+
if st.button("Previous Page") and page > 0:
|
145 |
+
st.session_state['current_page'] -= 1
|
146 |
+
st.rerun()
|
147 |
+
with cols[1]:
|
148 |
+
if st.button("Next Page"):
|
149 |
+
st.session_state['current_page'] += 1
|
150 |
+
st.rerun()
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
main()
|