Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -47,10 +47,13 @@ class DatasetSearcher:
|
|
47 |
|
48 |
# Store column information
|
49 |
self.columns = list(self.df.columns)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
# Update session state columns
|
56 |
st.session_state['search_columns'] = self.text_columns
|
@@ -66,16 +69,32 @@ class DatasetSearcher:
|
|
66 |
def prepare_features(self):
|
67 |
"""Prepare text embeddings for semantic search"""
|
68 |
try:
|
69 |
-
#
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Create embeddings in batches to manage memory
|
73 |
batch_size = 32
|
74 |
all_embeddings = []
|
75 |
|
76 |
with st.spinner("Preparing search features..."):
|
77 |
-
for i in range(0, len(
|
78 |
-
batch =
|
79 |
embeddings = self.text_model.encode(batch)
|
80 |
all_embeddings.append(embeddings)
|
81 |
|
@@ -98,10 +117,23 @@ class DatasetSearcher:
|
|
98 |
search_columns = [column] if column and column != "All Fields" else self.text_columns
|
99 |
keyword_scores = np.zeros(len(self.df))
|
100 |
|
|
|
101 |
for col in search_columns:
|
102 |
if col in self.df.columns:
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# Combine scores
|
107 |
combined_scores = 0.5 * similarities + 0.5 * (keyword_scores / max(1, keyword_scores.max()))
|
|
|
47 |
|
48 |
# Store column information
|
49 |
self.columns = list(self.df.columns)
|
50 |
+
# Identify searchable columns
|
51 |
+
self.text_columns = []
|
52 |
+
for col in self.columns:
|
53 |
+
if col.lower() not in ['embed', 'vector', 'encoding']:
|
54 |
+
sample_val = self.df[col].iloc[0] if not self.df.empty else None
|
55 |
+
if isinstance(sample_val, (str, int, float, list, dict)) or sample_val is None:
|
56 |
+
self.text_columns.append(col)
|
57 |
|
58 |
# Update session state columns
|
59 |
st.session_state['search_columns'] = self.text_columns
|
|
|
69 |
def prepare_features(self):
|
70 |
"""Prepare text embeddings for semantic search"""
|
71 |
try:
|
72 |
+
# Process text columns and handle different data types
|
73 |
+
processed_texts = []
|
74 |
+
for _, row in self.df.iterrows():
|
75 |
+
row_texts = []
|
76 |
+
for col in self.text_columns:
|
77 |
+
value = row[col]
|
78 |
+
if isinstance(value, (list, dict)):
|
79 |
+
# Convert lists or dicts to string representation
|
80 |
+
row_texts.append(str(value))
|
81 |
+
elif isinstance(value, (int, float)):
|
82 |
+
# Convert numbers to strings
|
83 |
+
row_texts.append(str(value))
|
84 |
+
elif value is None:
|
85 |
+
row_texts.append('')
|
86 |
+
else:
|
87 |
+
# Handle string values
|
88 |
+
row_texts.append(str(value))
|
89 |
+
processed_texts.append(' '.join(row_texts))
|
90 |
|
91 |
# Create embeddings in batches to manage memory
|
92 |
batch_size = 32
|
93 |
all_embeddings = []
|
94 |
|
95 |
with st.spinner("Preparing search features..."):
|
96 |
+
for i in range(0, len(processed_texts), batch_size):
|
97 |
+
batch = processed_texts[i:i+batch_size]
|
98 |
embeddings = self.text_model.encode(batch)
|
99 |
all_embeddings.append(embeddings)
|
100 |
|
|
|
117 |
search_columns = [column] if column and column != "All Fields" else self.text_columns
|
118 |
keyword_scores = np.zeros(len(self.df))
|
119 |
|
120 |
+
query_lower = query.lower()
|
121 |
for col in search_columns:
|
122 |
if col in self.df.columns:
|
123 |
+
for idx, value in enumerate(self.df[col]):
|
124 |
+
if isinstance(value, (list, dict)):
|
125 |
+
# Search in string representation of lists or dicts
|
126 |
+
text = str(value).lower()
|
127 |
+
elif isinstance(value, (int, float)):
|
128 |
+
# Convert numbers to strings for searching
|
129 |
+
text = str(value).lower()
|
130 |
+
elif value is None:
|
131 |
+
text = ''
|
132 |
+
else:
|
133 |
+
# Handle string values
|
134 |
+
text = str(value).lower()
|
135 |
+
|
136 |
+
keyword_scores[idx] += text.count(query_lower)
|
137 |
|
138 |
# Combine scores
|
139 |
combined_scores = 0.5 * similarities + 0.5 * (keyword_scores / max(1, keyword_scores.max()))
|