Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,218 +3,383 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
import
|
7 |
-
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
# Initialize session state variables
|
13 |
if 'search_history' not in st.session_state:
|
14 |
st.session_state['search_history'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if 'search_columns' not in st.session_state:
|
16 |
st.session_state['search_columns'] = []
|
17 |
if 'initial_search_done' not in st.session_state:
|
18 |
st.session_state['initial_search_done'] = False
|
19 |
-
if '
|
20 |
-
st.session_state['
|
|
|
|
|
21 |
|
22 |
-
def
|
23 |
-
"""Fetch dataset information
|
24 |
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
25 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
26 |
try:
|
27 |
-
response = requests.get(info_url,
|
28 |
if response.status_code == 200:
|
29 |
return response.json()
|
30 |
except Exception as e:
|
31 |
st.warning(f"Error fetching dataset info: {e}")
|
32 |
return None
|
33 |
|
34 |
-
def
|
35 |
-
"""Fetch
|
36 |
-
|
37 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
38 |
-
try:
|
39 |
-
response = requests.get(splits_url, headers=headers, timeout=30)
|
40 |
-
if response.status_code == 200:
|
41 |
-
return response.json().get('splits', [])
|
42 |
-
except Exception as e:
|
43 |
-
st.warning(f"Error fetching splits: {e}")
|
44 |
-
return []
|
45 |
-
|
46 |
-
def fetch_parquet_urls_auth(dataset_id, config, split, hf_token):
|
47 |
-
"""Fetch Parquet file URLs for a specific split"""
|
48 |
-
parquet_url = f"https://huggingface.co/api/datasets/{dataset_id}/parquet/{config}/{split}"
|
49 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
50 |
try:
|
51 |
-
response = requests.get(
|
52 |
if response.status_code == 200:
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
-
st.warning(f"Error fetching
|
56 |
return []
|
57 |
|
58 |
-
def
|
59 |
-
"""
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
class
|
71 |
-
def __init__(self
|
72 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
73 |
-
self.dataset_id = "
|
74 |
-
self.config = "v2"
|
75 |
-
self.hf_token = hf_token
|
76 |
self.load_dataset()
|
77 |
|
78 |
-
def
|
79 |
-
"""
|
80 |
try:
|
81 |
-
|
|
|
82 |
self.dataset_id,
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
100,
|
87 |
-
self.hf_token
|
88 |
)
|
89 |
|
90 |
-
if
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
self.dataset = pd.DataFrame(processed_rows)
|
97 |
-
st.session_state['search_columns'] = [col for col in self.dataset.columns
|
98 |
-
if not any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
|
99 |
-
else:
|
100 |
-
self.dataset = self.load_example_data()
|
101 |
|
|
|
|
|
102 |
except Exception as e:
|
103 |
st.warning(f"Error loading dataset: {e}")
|
104 |
-
|
105 |
-
|
106 |
-
self.prepare_features()
|
107 |
|
108 |
def load_example_data(self):
|
109 |
"""Load example data as fallback"""
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def prepare_features(self):
|
120 |
-
"""Prepare
|
121 |
try:
|
122 |
-
|
123 |
-
|
124 |
-
combined_text = self.dataset[text_fields].fillna('').agg(' '.join, axis=1)
|
125 |
-
self.text_embeds = self.text_model.encode(combined_text.tolist())
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
def search(self, query, column=None, top_k=20):
|
132 |
-
"""Search using text embeddings and optional column filtering"""
|
133 |
query_embedding = self.text_model.encode([query])[0]
|
134 |
-
|
|
|
|
|
135 |
|
136 |
# Column filtering
|
137 |
if column and column in self.dataset.columns and column != "All Fields":
|
138 |
mask = self.dataset[column].astype(str).str.contains(query, case=False)
|
139 |
-
|
140 |
|
141 |
-
top_k = min(top_k,
|
142 |
-
top_indices = np.argsort(
|
143 |
|
144 |
results = []
|
145 |
for idx in top_indices:
|
146 |
-
result = {
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
results.append(result)
|
151 |
|
152 |
return results
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
with col1:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
start_time = result.get('start_time', 0)
|
166 |
-
end_time = result.get('end_time', result.get('duration', 0))
|
167 |
-
st.markdown(f"**Time Range:** {start_time}s - {end_time}s")
|
168 |
-
|
169 |
-
# Show additional metadata
|
170 |
-
for key, value in result.items():
|
171 |
-
if key not in ['title', 'description', 'start_time', 'end_time', 'duration',
|
172 |
-
'relevance_score', 'video_id', '_config', '_split']:
|
173 |
-
st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
|
174 |
|
175 |
with col2:
|
176 |
-
st.
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
video_url = result['video_url']
|
182 |
-
elif 'youtube_id' in result:
|
183 |
-
video_url = f"https://youtube.com/watch?v={result['youtube_id']}&t={start_time}"
|
184 |
-
|
185 |
-
if video_url:
|
186 |
-
st.video(video_url)
|
187 |
-
|
188 |
-
def main():
|
189 |
-
st.title("π₯ Video Dataset Search")
|
190 |
-
|
191 |
-
# Get HF token from secrets or user input
|
192 |
-
if not st.session_state['hf_token']:
|
193 |
-
st.session_state['hf_token'] = HF_KEY
|
194 |
-
|
195 |
-
if not st.session_state['hf_token']:
|
196 |
-
hf_token = st.text_input("Enter your Hugging Face API token:", type="password")
|
197 |
-
if hf_token:
|
198 |
-
st.session_state['hf_token'] = hf_token
|
199 |
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
# Initialize search class
|
205 |
-
search =
|
206 |
|
207 |
# Create tabs
|
208 |
-
tab1, tab2 = st.tabs(["π
|
209 |
|
210 |
# ---- Tab 1: Video Search ----
|
211 |
with tab1:
|
212 |
st.subheader("Search Videos")
|
213 |
col1, col2 = st.columns([3, 1])
|
214 |
-
|
215 |
with col1:
|
216 |
query = st.text_input("Enter your search query:",
|
217 |
-
|
218 |
with col2:
|
219 |
search_column = st.selectbox("Search in field:",
|
220 |
["All Fields"] + st.session_state['search_columns'])
|
@@ -225,10 +390,9 @@ def main():
|
|
225 |
with col4:
|
226 |
search_button = st.button("π Search")
|
227 |
|
228 |
-
if search_button and query:
|
229 |
st.session_state['initial_search_done'] = True
|
230 |
selected_column = None if search_column == "All Fields" else search_column
|
231 |
-
|
232 |
with st.spinner("Searching..."):
|
233 |
results = search.search(query, selected_column, num_results)
|
234 |
|
@@ -239,35 +403,151 @@ def main():
|
|
239 |
})
|
240 |
|
241 |
for i, result in enumerate(results, 1):
|
242 |
-
with st.expander(
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
with tab2:
|
250 |
-
st.subheader("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
#
|
260 |
-
st.
|
261 |
-
st.write(f"- Loaded rows: {len(search.dataset)}")
|
262 |
-
st.write(f"- Available columns: {', '.join(search.dataset.columns)}")
|
263 |
|
264 |
-
#
|
265 |
-
st.
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
# Sidebar
|
269 |
with st.sidebar:
|
270 |
-
st.subheader("βοΈ
|
271 |
if st.button("ποΈ Clear History"):
|
272 |
st.session_state['search_history'] = []
|
273 |
st.experimental_rerun()
|
@@ -276,7 +556,12 @@ def main():
|
|
276 |
for entry in reversed(st.session_state['search_history'][-5:]):
|
277 |
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
278 |
for i, result in enumerate(entry['results'], 1):
|
279 |
-
st.write(f"{i}. {result
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
if __name__ == "__main__":
|
282 |
main()
|
|
|
3 |
import numpy as np
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
import os
|
9 |
+
import glob
|
10 |
+
from pathlib import Path
|
11 |
+
from datetime import datetime
|
12 |
+
import edge_tts
|
13 |
+
import asyncio
|
14 |
+
import base64
|
15 |
+
import requests
|
16 |
+
from collections import defaultdict
|
17 |
+
from audio_recorder_streamlit import audio_recorder
|
18 |
+
import streamlit.components.v1 as components
|
19 |
+
from urllib.parse import quote
|
20 |
+
from xml.etree import ElementTree as ET
|
21 |
|
22 |
+
# Initialize session state
|
|
|
|
|
23 |
if 'search_history' not in st.session_state:
|
24 |
st.session_state['search_history'] = []
|
25 |
+
if 'last_voice_input' not in st.session_state:
|
26 |
+
st.session_state['last_voice_input'] = ""
|
27 |
+
if 'transcript_history' not in st.session_state:
|
28 |
+
st.session_state['transcript_history'] = []
|
29 |
+
if 'should_rerun' not in st.session_state:
|
30 |
+
st.session_state['should_rerun'] = False
|
31 |
if 'search_columns' not in st.session_state:
|
32 |
st.session_state['search_columns'] = []
|
33 |
if 'initial_search_done' not in st.session_state:
|
34 |
st.session_state['initial_search_done'] = False
|
35 |
+
if 'tts_voice' not in st.session_state:
|
36 |
+
st.session_state['tts_voice'] = "en-US-AriaNeural"
|
37 |
+
if 'arxiv_last_query' not in st.session_state:
|
38 |
+
st.session_state['arxiv_last_query'] = ""
|
39 |
|
40 |
+
def fetch_dataset_info(dataset_id):
|
41 |
+
"""Fetch dataset information including all available configs and splits"""
|
42 |
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
|
|
43 |
try:
|
44 |
+
response = requests.get(info_url, timeout=30)
|
45 |
if response.status_code == 200:
|
46 |
return response.json()
|
47 |
except Exception as e:
|
48 |
st.warning(f"Error fetching dataset info: {e}")
|
49 |
return None
|
50 |
|
51 |
+
def fetch_dataset_rows(dataset_id, config="default", split="train", max_rows=100):
|
52 |
+
"""Fetch rows from a specific config and split of a dataset"""
|
53 |
+
url = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset_id}&config={config}&split={split}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
try:
|
55 |
+
response = requests.get(url, timeout=30)
|
56 |
if response.status_code == 200:
|
57 |
+
data = response.json()
|
58 |
+
if 'rows' in data:
|
59 |
+
processed_rows = []
|
60 |
+
for row_data in data['rows']:
|
61 |
+
row = row_data.get('row', row_data)
|
62 |
+
# Process embeddings if present
|
63 |
+
for key in row:
|
64 |
+
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
|
65 |
+
if isinstance(row[key], str):
|
66 |
+
try:
|
67 |
+
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
|
68 |
+
except:
|
69 |
+
continue
|
70 |
+
row['_config'] = config
|
71 |
+
row['_split'] = split
|
72 |
+
processed_rows.append(row)
|
73 |
+
return processed_rows
|
74 |
except Exception as e:
|
75 |
+
st.warning(f"Error fetching rows for {config}/{split}: {e}")
|
76 |
return []
|
77 |
|
78 |
+
def search_dataset(dataset_id, search_text, include_configs=None, include_splits=None):
|
79 |
+
"""
|
80 |
+
Search across all configurations and splits of a dataset
|
81 |
+
|
82 |
+
Args:
|
83 |
+
dataset_id (str): The Hugging Face dataset ID
|
84 |
+
search_text (str): Text to search for in descriptions and queries
|
85 |
+
include_configs (list): List of specific configs to search, or None for all
|
86 |
+
include_splits (list): List of specific splits to search, or None for all
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
tuple: (DataFrame of results, list of available configs, list of available splits)
|
90 |
+
"""
|
91 |
+
# Get dataset info
|
92 |
+
dataset_info = fetch_dataset_info(dataset_id)
|
93 |
+
if not dataset_info:
|
94 |
+
return pd.DataFrame(), [], []
|
95 |
+
|
96 |
+
# Get available configs and splits
|
97 |
+
configs = include_configs if include_configs else dataset_info.get('config_names', ['default'])
|
98 |
+
all_rows = []
|
99 |
+
available_splits = set()
|
100 |
+
|
101 |
+
# Search across configs and splits
|
102 |
+
for config in configs:
|
103 |
+
try:
|
104 |
+
# First fetch split info for this config
|
105 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
|
106 |
+
splits_response = requests.get(splits_url, timeout=30)
|
107 |
+
if splits_response.status_code == 200:
|
108 |
+
splits_data = splits_response.json()
|
109 |
+
splits = [split['split'] for split in splits_data.get('splits', [])]
|
110 |
+
if not splits:
|
111 |
+
splits = ['train'] # fallback to train if no splits found
|
112 |
+
|
113 |
+
# Filter splits if specified
|
114 |
+
if include_splits:
|
115 |
+
splits = [s for s in splits if s in include_splits]
|
116 |
+
|
117 |
+
available_splits.update(splits)
|
118 |
+
|
119 |
+
# Fetch and search rows for each split
|
120 |
+
for split in splits:
|
121 |
+
rows = fetch_dataset_rows(dataset_id, config, split)
|
122 |
+
for row in rows:
|
123 |
+
# Search in all text fields
|
124 |
+
text_content = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
|
125 |
+
if search_text.lower() in text_content.lower():
|
126 |
+
row['_matched_text'] = text_content
|
127 |
+
row['_relevance_score'] = text_content.lower().count(search_text.lower())
|
128 |
+
all_rows.append(row)
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
st.warning(f"Error processing config {config}: {e}")
|
132 |
+
continue
|
133 |
+
|
134 |
+
# Convert to DataFrame and sort by relevance
|
135 |
+
if all_rows:
|
136 |
+
df = pd.DataFrame(all_rows)
|
137 |
+
df = df.sort_values('_relevance_score', ascending=False)
|
138 |
+
return df, configs, list(available_splits)
|
139 |
+
|
140 |
+
return pd.DataFrame(), configs, list(available_splits)
|
141 |
|
142 |
+
class VideoSearch:
|
143 |
+
def __init__(self):
|
144 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
145 |
+
self.dataset_id = "omegalabsinc/omega-multimodal"
|
|
|
|
|
146 |
self.load_dataset()
|
147 |
|
148 |
+
def fetch_dataset_rows(self):
|
149 |
+
"""Fetch dataset with enhanced search capabilities"""
|
150 |
try:
|
151 |
+
# First try to get all available data
|
152 |
+
df, configs, splits = search_dataset(
|
153 |
self.dataset_id,
|
154 |
+
"", # empty search text to get all data
|
155 |
+
include_configs=None, # all configs
|
156 |
+
include_splits=None # all splits
|
|
|
|
|
157 |
)
|
158 |
|
159 |
+
if not df.empty:
|
160 |
+
st.session_state['search_columns'] = [col for col in df.columns
|
161 |
+
if col not in ['video_embed', 'description_embed', 'audio_embed']
|
162 |
+
and not col.startswith('_')]
|
163 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
return self.load_example_data()
|
166 |
+
|
167 |
except Exception as e:
|
168 |
st.warning(f"Error loading dataset: {e}")
|
169 |
+
return self.load_example_data()
|
|
|
|
|
170 |
|
171 |
def load_example_data(self):
|
172 |
"""Load example data as fallback"""
|
173 |
+
example_data = [
|
174 |
+
{
|
175 |
+
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
176 |
+
"youtube_id": "IO-vwtyicn4",
|
177 |
+
"description": "This video shows a close-up of an ancient text carved into a surface.",
|
178 |
+
"views": 45489,
|
179 |
+
"start_time": 1452,
|
180 |
+
"end_time": 1458,
|
181 |
+
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
182 |
+
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
183 |
+
}
|
184 |
+
]
|
185 |
+
return pd.DataFrame(example_data)
|
186 |
|
187 |
def prepare_features(self):
|
188 |
+
"""Prepare embeddings with adaptive field detection"""
|
189 |
try:
|
190 |
+
embed_cols = [col for col in self.dataset.columns
|
191 |
+
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
|
|
|
|
|
192 |
|
193 |
+
embeddings = {}
|
194 |
+
for col in embed_cols:
|
195 |
+
try:
|
196 |
+
data = []
|
197 |
+
for row in self.dataset[col]:
|
198 |
+
if isinstance(row, str):
|
199 |
+
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
|
200 |
+
elif isinstance(row, list):
|
201 |
+
values = row
|
202 |
+
else:
|
203 |
+
continue
|
204 |
+
data.append(values)
|
205 |
+
|
206 |
+
if data:
|
207 |
+
embeddings[col] = np.array(data)
|
208 |
+
except:
|
209 |
+
continue
|
210 |
+
|
211 |
+
# Set main embeddings for search
|
212 |
+
if 'video_embed' in embeddings:
|
213 |
+
self.video_embeds = embeddings['video_embed']
|
214 |
+
else:
|
215 |
+
self.video_embeds = next(iter(embeddings.values()))
|
216 |
+
|
217 |
+
if 'description_embed' in embeddings:
|
218 |
+
self.text_embeds = embeddings['description_embed']
|
219 |
+
else:
|
220 |
+
self.text_embeds = self.video_embeds
|
221 |
+
|
222 |
+
except:
|
223 |
+
# Fallback to random embeddings
|
224 |
+
num_rows = len(self.dataset)
|
225 |
+
self.video_embeds = np.random.randn(num_rows, 384)
|
226 |
+
self.text_embeds = np.random.randn(num_rows, 384)
|
227 |
+
|
228 |
+
def load_dataset(self):
|
229 |
+
self.dataset = self.fetch_dataset_rows()
|
230 |
+
self.prepare_features()
|
231 |
|
232 |
def search(self, query, column=None, top_k=20):
|
|
|
233 |
query_embedding = self.text_model.encode([query])[0]
|
234 |
+
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
235 |
+
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
236 |
+
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
237 |
|
238 |
# Column filtering
|
239 |
if column and column in self.dataset.columns and column != "All Fields":
|
240 |
mask = self.dataset[column].astype(str).str.contains(query, case=False)
|
241 |
+
combined_sims[~mask] *= 0.5
|
242 |
|
243 |
+
top_k = min(top_k, 100)
|
244 |
+
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
245 |
|
246 |
results = []
|
247 |
for idx in top_indices:
|
248 |
+
result = {'relevance_score': float(combined_sims[idx])}
|
249 |
+
for col in self.dataset.columns:
|
250 |
+
if col not in ['video_embed', 'description_embed', 'audio_embed']:
|
251 |
+
result[col] = self.dataset.iloc[idx][col]
|
252 |
results.append(result)
|
253 |
|
254 |
return results
|
255 |
|
256 |
+
@st.cache_resource
|
257 |
+
def get_speech_model():
|
258 |
+
return edge_tts.Communicate
|
259 |
+
|
260 |
+
async def generate_speech(text, voice=None):
|
261 |
+
if not text.strip():
|
262 |
+
return None
|
263 |
+
if not voice:
|
264 |
+
voice = st.session_state['tts_voice']
|
265 |
+
try:
|
266 |
+
communicate = get_speech_model()(text, voice)
|
267 |
+
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
268 |
+
await communicate.save(audio_file)
|
269 |
+
return audio_file
|
270 |
+
except Exception as e:
|
271 |
+
st.error(f"Error generating speech: {e}")
|
272 |
+
return None
|
273 |
+
|
274 |
+
def transcribe_audio(audio_path):
|
275 |
+
"""Placeholder for ASR transcription"""
|
276 |
+
return "ASR not implemented. Integrate a local model or another service here."
|
277 |
+
|
278 |
+
def show_file_manager():
|
279 |
+
"""Display file manager interface"""
|
280 |
+
st.subheader("π File Manager")
|
281 |
+
col1, col2 = st.columns(2)
|
282 |
with col1:
|
283 |
+
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
|
284 |
+
if uploaded_file:
|
285 |
+
with open(uploaded_file.name, "wb") as f:
|
286 |
+
f.write(uploaded_file.getvalue())
|
287 |
+
st.success(f"Uploaded: {uploaded_file.name}")
|
288 |
+
st.experimental_rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
with col2:
|
291 |
+
if st.button("π Clear All Files"):
|
292 |
+
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
|
293 |
+
os.remove(f)
|
294 |
+
st.success("All files cleared!")
|
295 |
+
st.experimental_rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
|
298 |
+
if files:
|
299 |
+
st.write("### Existing Files")
|
300 |
+
for f in files:
|
301 |
+
with st.expander(f"π {os.path.basename(f)}"):
|
302 |
+
if f.endswith('.mp3'):
|
303 |
+
st.audio(f)
|
304 |
+
else:
|
305 |
+
with open(f, 'r', encoding='utf-8') as file:
|
306 |
+
st.text_area("Content", file.read(), height=100)
|
307 |
+
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
|
308 |
+
os.remove(f)
|
309 |
+
st.experimental_rerun()
|
310 |
+
|
311 |
+
def arxiv_search(query, max_results=5):
|
312 |
+
"""Perform a simple Arxiv search using their API and return top results."""
|
313 |
+
base_url = "http://export.arxiv.org/api/query?"
|
314 |
+
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
|
315 |
+
r = requests.get(search_url)
|
316 |
+
if r.status_code == 200:
|
317 |
+
root = ET.fromstring(r.text)
|
318 |
+
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
319 |
+
entries = root.findall('atom:entry', ns)
|
320 |
+
results = []
|
321 |
+
for entry in entries:
|
322 |
+
title = entry.find('atom:title', ns).text.strip()
|
323 |
+
summary = entry.find('atom:summary', ns).text.strip()
|
324 |
+
link = None
|
325 |
+
for l in entry.findall('atom:link', ns):
|
326 |
+
if l.get('type') == 'text/html':
|
327 |
+
link = l.get('href')
|
328 |
+
break
|
329 |
+
results.append((title, summary, link))
|
330 |
+
return results
|
331 |
+
return []
|
332 |
+
|
333 |
+
def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
|
334 |
+
results = arxiv_search(q, max_results=5)
|
335 |
+
if not results:
|
336 |
+
st.write("No Arxiv results found.")
|
337 |
return
|
338 |
+
st.markdown(f"**Arxiv Search Results for '{q}':**")
|
339 |
+
for i, (title, summary, link) in enumerate(results, start=1):
|
340 |
+
st.markdown(f"**{i}. {title}**")
|
341 |
+
st.write(summary)
|
342 |
+
if link:
|
343 |
+
st.markdown(f"[View Paper]({link})")
|
344 |
+
|
345 |
+
if vocal_summary:
|
346 |
+
spoken_text = f"Here are some Arxiv results for {q}. "
|
347 |
+
if titles_summary:
|
348 |
+
spoken_text += " Titles: " + ", ".join([res[0] for res in results])
|
349 |
+
else:
|
350 |
+
# Just first summary if no titles_summary
|
351 |
+
spoken_text += " " + results[0][1][:200]
|
352 |
+
|
353 |
+
audio_file = asyncio.run(generate_speech(spoken_text))
|
354 |
+
if audio_file:
|
355 |
+
st.audio(audio_file)
|
356 |
+
|
357 |
+
if full_audio:
|
358 |
+
# Full audio of summaries
|
359 |
+
full_text = ""
|
360 |
+
for i,(title, summary, _) in enumerate(results, start=1):
|
361 |
+
full_text += f"Result {i}: {title}. {summary} "
|
362 |
+
audio_file_full = asyncio.run(generate_speech(full_text))
|
363 |
+
if audio_file_full:
|
364 |
+
st.write("### Full Audio")
|
365 |
+
st.audio(audio_file_full)
|
366 |
+
|
367 |
+
def main():
|
368 |
+
st.title("π₯ Video & Arxiv Search with Voice (No OpenAI/Anthropic)")
|
369 |
|
370 |
# Initialize search class
|
371 |
+
search = VideoSearch()
|
372 |
|
373 |
# Create tabs
|
374 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files", "π Advanced Search"])
|
375 |
|
376 |
# ---- Tab 1: Video Search ----
|
377 |
with tab1:
|
378 |
st.subheader("Search Videos")
|
379 |
col1, col2 = st.columns([3, 1])
|
|
|
380 |
with col1:
|
381 |
query = st.text_input("Enter your search query:",
|
382 |
+
value="ancient" if not st.session_state['initial_search_done'] else "")
|
383 |
with col2:
|
384 |
search_column = st.selectbox("Search in field:",
|
385 |
["All Fields"] + st.session_state['search_columns'])
|
|
|
390 |
with col4:
|
391 |
search_button = st.button("π Search")
|
392 |
|
393 |
+
if (search_button or not st.session_state['initial_search_done']) and query:
|
394 |
st.session_state['initial_search_done'] = True
|
395 |
selected_column = None if search_column == "All Fields" else search_column
|
|
|
396 |
with st.spinner("Searching..."):
|
397 |
results = search.search(query, selected_column, num_results)
|
398 |
|
|
|
403 |
})
|
404 |
|
405 |
for i, result in enumerate(results, 1):
|
406 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
|
407 |
+
cols = st.columns([2, 1])
|
408 |
+
with cols[0]:
|
409 |
+
st.markdown("**Description:**")
|
410 |
+
st.write(result['description'])
|
411 |
+
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
|
412 |
+
st.markdown(f"**Views:** {result['views']:,}")
|
413 |
+
|
414 |
+
with cols[1]:
|
415 |
+
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
|
416 |
+
if result.get('youtube_id'):
|
417 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
418 |
+
|
419 |
+
if st.button(f"π Audio Summary", key=f"audio_{i}"):
|
420 |
+
summary = f"Video summary: {result['description'][:200]}"
|
421 |
+
audio_file = asyncio.run(generate_speech(summary))
|
422 |
+
if audio_file:
|
423 |
+
st.audio(audio_file)
|
424 |
+
|
425 |
+
# ---- Tab 2: Voice Input ----
|
426 |
with tab2:
|
427 |
+
st.subheader("Voice Input")
|
428 |
+
st.write("ποΈ Record your voice:")
|
429 |
+
audio_bytes = audio_recorder()
|
430 |
+
if audio_bytes:
|
431 |
+
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
|
432 |
+
with open(audio_path, "wb") as f:
|
433 |
+
f.write(audio_bytes)
|
434 |
+
st.success("Audio recorded successfully!")
|
435 |
+
|
436 |
+
voice_query = transcribe_audio(audio_path)
|
437 |
+
st.markdown("**Transcribed Text:**")
|
438 |
+
st.write(voice_query)
|
439 |
+
st.session_state['last_voice_input'] = voice_query
|
440 |
+
|
441 |
+
if st.button("π Search from Voice"):
|
442 |
+
results = search.search(voice_query, None, 20)
|
443 |
+
for i, result in enumerate(results, 1):
|
444 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
445 |
+
st.write(result['description'])
|
446 |
+
if result.get('youtube_id'):
|
447 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
448 |
+
|
449 |
+
if os.path.exists(audio_path):
|
450 |
+
os.remove(audio_path)
|
451 |
+
|
452 |
+
# ---- Tab 3: Arxiv Search ----
|
453 |
+
with tab3:
|
454 |
+
st.subheader("Arxiv Search")
|
455 |
+
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
|
456 |
+
vocal_summary = st.checkbox("π Short Audio Summary", value=True)
|
457 |
+
titles_summary = st.checkbox("π Titles Only", value=True)
|
458 |
+
full_audio = st.checkbox("π Full Audio Results", value=False)
|
459 |
|
460 |
+
if st.button("π Arxiv Search"):
|
461 |
+
st.session_state['arxiv_last_query'] = q
|
462 |
+
perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)
|
463 |
+
|
464 |
+
# ---- Tab 4: File Manager ----
|
465 |
+
with tab4:
|
466 |
+
show_file_manager()
|
467 |
+
|
468 |
+
# ---- Tab 5: Advanced Dataset Search ----
|
469 |
+
with tab5:
|
470 |
+
st.subheader("Advanced Dataset Search")
|
471 |
|
472 |
+
# Dataset input
|
473 |
+
dataset_id = st.text_input("Dataset ID:", value="omegalabsinc/omega-multimodal")
|
|
|
|
|
474 |
|
475 |
+
# Search configuration
|
476 |
+
col1, col2 = st.columns([2, 1])
|
477 |
+
with col1:
|
478 |
+
search_text = st.text_input("Search text:",
|
479 |
+
placeholder="Enter text to search across all fields")
|
480 |
+
|
481 |
+
# Get available configs and splits
|
482 |
+
if dataset_id:
|
483 |
+
dataset_info = fetch_dataset_info(dataset_id)
|
484 |
+
if dataset_info:
|
485 |
+
configs = dataset_info.get('config_names', ['default'])
|
486 |
+
with col2:
|
487 |
+
selected_configs = st.multiselect(
|
488 |
+
"Configurations:",
|
489 |
+
options=configs,
|
490 |
+
default=['default'] if 'default' in configs else None
|
491 |
+
)
|
492 |
+
|
493 |
+
# Fetch available splits
|
494 |
+
if selected_configs:
|
495 |
+
all_splits = set()
|
496 |
+
for config in selected_configs:
|
497 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
|
498 |
+
try:
|
499 |
+
response = requests.get(splits_url, timeout=30)
|
500 |
+
if response.status_code == 200:
|
501 |
+
splits_data = response.json()
|
502 |
+
splits = [split['split'] for split in splits_data.get('splits', [])]
|
503 |
+
all_splits.update(splits)
|
504 |
+
except Exception as e:
|
505 |
+
st.warning(f"Error fetching splits for {config}: {e}")
|
506 |
+
|
507 |
+
selected_splits = st.multiselect(
|
508 |
+
"Splits:",
|
509 |
+
options=list(all_splits),
|
510 |
+
default=['train'] if 'train' in all_splits else None
|
511 |
+
)
|
512 |
+
|
513 |
+
if st.button("π Search Dataset"):
|
514 |
+
with st.spinner("Searching dataset..."):
|
515 |
+
results_df, _, _ = search_dataset(
|
516 |
+
dataset_id,
|
517 |
+
search_text,
|
518 |
+
include_configs=selected_configs,
|
519 |
+
include_splits=selected_splits
|
520 |
+
)
|
521 |
+
|
522 |
+
if not results_df.empty:
|
523 |
+
st.write(f"Found {len(results_df)} results")
|
524 |
+
|
525 |
+
# Display results in expandable sections
|
526 |
+
for idx, row in results_df.iterrows():
|
527 |
+
with st.expander(
|
528 |
+
f"Result {idx+1} (Config: {row['_config']}, Split: {row['_split']}, Score: {row['_relevance_score']})"
|
529 |
+
):
|
530 |
+
# Display all fields except internal ones
|
531 |
+
for col in row.index:
|
532 |
+
if not col.startswith('_') and not any(
|
533 |
+
term in col.lower()
|
534 |
+
for term in ['embed', 'vector', 'encoding']
|
535 |
+
):
|
536 |
+
st.write(f"**{col}:** {row[col]}")
|
537 |
+
|
538 |
+
# Add buttons for audio/video if available
|
539 |
+
if 'youtube_id' in row:
|
540 |
+
st.video(
|
541 |
+
f"https://youtube.com/watch?v={row['youtube_id']}&t={row.get('start_time', 0)}"
|
542 |
+
)
|
543 |
+
else:
|
544 |
+
st.warning("No results found.")
|
545 |
+
else:
|
546 |
+
st.error("Unable to fetch dataset information.")
|
547 |
|
548 |
# Sidebar
|
549 |
with st.sidebar:
|
550 |
+
st.subheader("βοΈ Settings & History")
|
551 |
if st.button("ποΈ Clear History"):
|
552 |
st.session_state['search_history'] = []
|
553 |
st.experimental_rerun()
|
|
|
556 |
for entry in reversed(st.session_state['search_history'][-5:]):
|
557 |
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
558 |
for i, result in enumerate(entry['results'], 1):
|
559 |
+
st.write(f"{i}. {result['description'][:100]}...")
|
560 |
+
|
561 |
+
st.markdown("### Voice Settings")
|
562 |
+
st.selectbox("TTS Voice:",
|
563 |
+
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
564 |
+
key="tts_voice")
|
565 |
|
566 |
if __name__ == "__main__":
|
567 |
main()
|