Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def fetch_dataset_info_auth(dataset_id, hf_token):
|
2 |
+
"""Fetch dataset information with authentication"""
|
3 |
+
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
4 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
5 |
+
try:
|
6 |
+
response = requests.get(info_url, headers=headers, timeout=30)
|
7 |
+
if response.status_code == 200:
|
8 |
+
return response.json()
|
9 |
+
except Exception as e:
|
10 |
+
st.warning(f"Error fetching dataset info: {e}")
|
11 |
+
return None
|
12 |
+
|
13 |
+
def fetch_dataset_splits_auth(dataset_id, hf_token):
|
14 |
+
"""Fetch available splits for the dataset"""
|
15 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}"
|
16 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
17 |
+
try:
|
18 |
+
response = requests.get(splits_url, headers=headers, timeout=30)
|
19 |
+
if response.status_code == 200:
|
20 |
+
return response.json().get('splits', [])
|
21 |
+
except Exception as e:
|
22 |
+
st.warning(f"Error fetching splits: {e}")
|
23 |
+
return []
|
24 |
+
|
25 |
+
def fetch_parquet_urls_auth(dataset_id, config, split, hf_token):
|
26 |
+
"""Fetch Parquet file URLs for a specific split"""
|
27 |
+
parquet_url = f"https://huggingface.co/api/datasets/{dataset_id}/parquet/{config}/{split}"
|
28 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
29 |
+
try:
|
30 |
+
response = requests.get(parquet_url, headers=headers, timeout=30)
|
31 |
+
if response.status_code == 200:
|
32 |
+
return response.json()
|
33 |
+
except Exception as e:
|
34 |
+
st.warning(f"Error fetching parquet URLs: {e}")
|
35 |
+
return []
|
36 |
+
|
37 |
+
def fetch_rows_auth(dataset_id, config, split, offset, length, hf_token):
|
38 |
+
"""Fetch rows with authentication"""
|
39 |
+
url = f"https://datasets-server.huggingface.co/rows?dataset={dataset_id}&config={config}&split={split}&offset={offset}&length={length}"
|
40 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
41 |
+
try:
|
42 |
+
response = requests.get(url, headers=headers, timeout=30)
|
43 |
+
if response.status_code == 200:
|
44 |
+
return response.json()
|
45 |
+
except Exception as e:
|
46 |
+
st.warning(f"Error fetching rows: {e}")
|
47 |
+
return None
|
48 |
+
|
49 |
+
class ParquetVideoSearch:
|
50 |
+
def __init__(self, hf_token):
|
51 |
+
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
52 |
+
self.dataset_id = "tomg-group-umd/cinepile"
|
53 |
+
self.config = "v2"
|
54 |
+
self.hf_token = hf_token
|
55 |
+
self.load_dataset()
|
56 |
+
|
57 |
+
def load_dataset(self):
|
58 |
+
"""Load initial dataset sample"""
|
59 |
+
try:
|
60 |
+
rows_data = fetch_rows_auth(
|
61 |
+
self.dataset_id,
|
62 |
+
self.config,
|
63 |
+
"train",
|
64 |
+
0,
|
65 |
+
100,
|
66 |
+
self.hf_token
|
67 |
+
)
|
68 |
+
|
69 |
+
if rows_data and 'rows' in rows_data:
|
70 |
+
processed_rows = []
|
71 |
+
for row_data in rows_data['rows']:
|
72 |
+
row = row_data.get('row', row_data)
|
73 |
+
processed_rows.append(row)
|
74 |
+
|
75 |
+
self.dataset = pd.DataFrame(processed_rows)
|
76 |
+
st.session_state['search_columns'] = [col for col in self.dataset.columns
|
77 |
+
if not any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
|
78 |
+
else:
|
79 |
+
self.dataset = self.load_example_data()
|
80 |
+
|
81 |
+
except Exception as e:
|
82 |
+
st.warning(f"Error loading dataset: {e}")
|
83 |
+
self.dataset = self.load_example_data()
|
84 |
+
|
85 |
+
self.prepare_features()
|
86 |
+
|
87 |
+
def load_example_data(self):
|
88 |
+
"""Load example data as fallback"""
|
89 |
+
return pd.DataFrame([{
|
90 |
+
"video_id": "example",
|
91 |
+
"title": "Example Video",
|
92 |
+
"description": "Example video content",
|
93 |
+
"duration": 120,
|
94 |
+
"start_time": 0,
|
95 |
+
"end_time": 120
|
96 |
+
}])
|
97 |
+
|
98 |
+
def prepare_features(self):
|
99 |
+
"""Prepare text features for search"""
|
100 |
+
try:
|
101 |
+
# Combine relevant text fields for search
|
102 |
+
text_fields = ['title', 'description'] if 'title' in self.dataset.columns else ['description']
|
103 |
+
combined_text = self.dataset[text_fields].fillna('').agg(' '.join, axis=1)
|
104 |
+
self.text_embeds = self.text_model.encode(combined_text.tolist())
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
st.warning(f"Error preparing features: {e}")
|
108 |
+
self.text_embeds = np.random.randn(len(self.dataset), 384)
|
109 |
+
|
110 |
+
def search(self, query, column=None, top_k=20):
|
111 |
+
"""Search using text embeddings and optional column filtering"""
|
112 |
+
query_embedding = self.text_model.encode([query])[0]
|
113 |
+
similarities = cosine_similarity([query_embedding], self.text_embeds)[0]
|
114 |
+
|
115 |
+
# Column filtering
|
116 |
+
if column and column in self.dataset.columns and column != "All Fields":
|
117 |
+
mask = self.dataset[column].astype(str).str.contains(query, case=False)
|
118 |
+
similarities[~mask] *= 0.5
|
119 |
+
|
120 |
+
top_k = min(top_k, len(similarities))
|
121 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
122 |
+
|
123 |
+
results = []
|
124 |
+
for idx in top_indices:
|
125 |
+
result = {
|
126 |
+
'relevance_score': float(similarities[idx]),
|
127 |
+
**self.dataset.iloc[idx].to_dict()
|
128 |
+
}
|
129 |
+
results.append(result)
|
130 |
+
|
131 |
+
return results
|
132 |
+
|
133 |
+
def render_video_result(result):
|
134 |
+
"""Render a video result with enhanced display"""
|
135 |
+
col1, col2 = st.columns([2, 1])
|
136 |
+
|
137 |
+
with col1:
|
138 |
+
if 'title' in result:
|
139 |
+
st.markdown(f"**Title:** {result['title']}")
|
140 |
+
st.markdown("**Description:**")
|
141 |
+
st.write(result.get('description', 'No description available'))
|
142 |
+
|
143 |
+
# Show timing information
|
144 |
+
start_time = result.get('start_time', 0)
|
145 |
+
end_time = result.get('end_time', result.get('duration', 0))
|
146 |
+
st.markdown(f"**Time Range:** {start_time}s - {end_time}s")
|
147 |
+
|
148 |
+
# Show additional metadata
|
149 |
+
for key, value in result.items():
|
150 |
+
if key not in ['title', 'description', 'start_time', 'end_time', 'duration',
|
151 |
+
'relevance_score', 'video_id', '_config', '_split']:
|
152 |
+
st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
|
153 |
+
|
154 |
+
with col2:
|
155 |
+
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
|
156 |
+
|
157 |
+
# Display video if URL is available
|
158 |
+
video_url = None
|
159 |
+
if 'video_url' in result:
|
160 |
+
video_url = result['video_url']
|
161 |
+
elif 'youtube_id' in result:
|
162 |
+
video_url = f"https://youtube.com/watch?v={result['youtube_id']}&t={start_time}"
|
163 |
+
|
164 |
+
if video_url:
|
165 |
+
st.video(video_url)
|
166 |
+
if st.button(f"π Audio Summary", key=f"audio_{result.get('video_id', '')}"):
|
167 |
+
summary = f"Video summary: {result.get('title', '')}. {result.get('description', '')[:200]}"
|
168 |
+
audio_file = asyncio.run(generate_speech(summary))
|
169 |
+
if audio_file:
|
170 |
+
st.audio(audio_file)
|
171 |
+
|
172 |
+
def main():
|
173 |
+
st.title("π₯ Enhanced Video Search with Parquet Support")
|
174 |
+
|
175 |
+
# Get HF token from secrets or user input
|
176 |
+
if 'hf_token' not in st.session_state:
|
177 |
+
st.session_state['hf_token'] = st.secrets.get("HF_TOKEN", None)
|
178 |
+
|
179 |
+
if not st.session_state['hf_token']:
|
180 |
+
hf_token = st.text_input("Enter your Hugging Face API token:", type="password")
|
181 |
+
if hf_token:
|
182 |
+
st.session_state['hf_token'] = hf_token
|
183 |
+
|
184 |
+
if not st.session_state.get('hf_token'):
|
185 |
+
st.warning("Please provide a Hugging Face API token to access the dataset.")
|
186 |
+
return
|
187 |
+
|
188 |
+
# Initialize search class
|
189 |
+
search = ParquetVideoSearch(st.session_state['hf_token'])
|
190 |
+
|
191 |
+
# Create tabs
|
192 |
+
tab1, tab2 = st.tabs(["π Video Search", "π Dataset Info"])
|
193 |
+
|
194 |
+
# ---- Tab 1: Video Search ----
|
195 |
+
with tab1:
|
196 |
+
st.subheader("Search Videos")
|
197 |
+
col1, col2 = st.columns([3, 1])
|
198 |
+
|
199 |
+
with col1:
|
200 |
+
query = st.text_input("Enter your search query:",
|
201 |
+
value="" if st.session_state['initial_search_done'] else "")
|
202 |
+
with col2:
|
203 |
+
search_column = st.selectbox("Search in field:",
|
204 |
+
["All Fields"] + st.session_state['search_columns'])
|
205 |
+
|
206 |
+
col3, col4 = st.columns(2)
|
207 |
+
with col3:
|
208 |
+
num_results = st.slider("Number of results:", 1, 100, 20)
|
209 |
+
with col4:
|
210 |
+
search_button = st.button("π Search")
|
211 |
+
|
212 |
+
if search_button and query:
|
213 |
+
st.session_state['initial_search_done'] = True
|
214 |
+
selected_column = None if search_column == "All Fields" else search_column
|
215 |
+
|
216 |
+
with st.spinner("Searching..."):
|
217 |
+
results = search.search(query, selected_column, num_results)
|
218 |
+
|
219 |
+
st.session_state['search_history'].append({
|
220 |
+
'query': query,
|
221 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
222 |
+
'results': results[:5]
|
223 |
+
})
|
224 |
+
|
225 |
+
for i, result in enumerate(results, 1):
|
226 |
+
with st.expander(
|
227 |
+
f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...",
|
228 |
+
expanded=(i==1)
|
229 |
+
):
|
230 |
+
render_video_result(result)
|
231 |
+
|
232 |
+
# ---- Tab 2: Dataset Info ----
|
233 |
+
with tab2:
|
234 |
+
st.subheader("Dataset Information")
|
235 |
+
|
236 |
+
# Show available splits
|
237 |
+
splits = fetch_dataset_splits_auth(search.dataset_id, st.session_state['hf_token'])
|
238 |
+
if splits:
|
239 |
+
st.write("### Available Splits")
|
240 |
+
for split in splits:
|
241 |
+
st.write(f"- {split['split']}: {split.get('num_rows', 'unknown')} rows")
|
242 |
+
|
243 |
+
# Show dataset statistics
|
244 |
+
st.write("### Dataset Statistics")
|
245 |
+
st.write(f"- Loaded rows: {len(search.dataset)}")
|
246 |
+
st.write(f"- Available columns: {', '.join(search.dataset.columns)}")
|
247 |
+
|
248 |
+
# Show sample data
|
249 |
+
st.write("### Sample Data")
|
250 |
+
st.dataframe(search.dataset.head())
|
251 |
+
|
252 |
+
# Sidebar
|
253 |
+
with st.sidebar:
|
254 |
+
st.subheader("βοΈ Settings & History")
|
255 |
+
if st.button("ποΈ Clear History"):
|
256 |
+
st.session_state['search_history'] = []
|
257 |
+
st.experimental_rerun()
|
258 |
+
|
259 |
+
st.markdown("### Recent Searches")
|
260 |
+
for entry in reversed(st.session_state['search_history'][-5:]):
|
261 |
+
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
262 |
+
for i, result in enumerate(entry['results'], 1):
|
263 |
+
st.write(f"{i}. {result.get('title', result.get('description', 'No title'))[:100]}...")
|
264 |
+
|
265 |
+
if __name__ == "__main__":
|
266 |
+
main()
|