File size: 7,558 Bytes
67c01ec
 
 
 
 
4e1519e
8427637
959152c
67c01ec
8427637
67c01ec
 
 
 
bdefc08
 
 
 
 
 
9b95cb7
 
67c01ec
bdefc08
 
 
 
9b95cb7
bdefc08
 
9b95cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdefc08
959152c
 
bdefc08
959152c
 
 
 
9b95cb7
193042f
 
 
9b95cb7
 
 
bdefc08
 
9b95cb7
 
bdefc08
 
 
9b95cb7
 
 
193042f
 
 
 
 
 
 
959152c
193042f
 
 
 
959152c
193042f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afbfac
959152c
9b95cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8427637
 
bdefc08
6afbfac
 
bdefc08
6afbfac
9b95cb7
 
 
 
 
 
 
 
 
6afbfac
bdefc08
9b95cb7
 
959152c
bdefc08
 
 
 
 
9b95cb7
 
 
 
 
 
bdefc08
 
 
 
8427637
bdefc08
 
9b95cb7
 
 
bdefc08
 
9b95cb7
 
bdefc08
 
 
 
9b95cb7
 
bdefc08
 
9b95cb7
 
bdefc08
6afbfac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import os
from datetime import datetime
from datasets import load_dataset

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'dataset_loaded' not in st.session_state:
    st.session_state['dataset_loaded'] = False
if 'current_page' not in st.session_state:
    st.session_state['current_page'] = 0
if 'data_cache' not in st.session_state:
    st.session_state['data_cache'] = None
if 'dataset_info' not in st.session_state:
    st.session_state['dataset_info'] = None

ROWS_PER_PAGE = 100  # Number of rows to load at a time

@st.cache_resource
def get_model():
    """Cache the model loading"""
    return SentenceTransformer('all-MiniLM-L6-v2')

@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
    """Load and cache a specific page of data"""
    try:
        start_idx = page * rows_per_page
        end_idx = start_idx + rows_per_page
        dataset = load_dataset(
            dataset_id,
            token=token,
            streaming=False,
            split=f'train[{start_idx}:{end_idx}]'
        )
        return pd.DataFrame(dataset)
    except Exception as e:
        st.error(f"Error loading page {page}: {str(e)}")
        return pd.DataFrame()

@st.cache_data
def get_dataset_info(dataset_id, token):
    """Load and cache dataset information"""
    try:
        dataset = load_dataset(
            dataset_id,
            token=token,
            streaming=True
        )
        return dataset['train'].info
    except Exception as e:
        st.error(f"Error loading dataset info: {str(e)}")
        return None

class FastDatasetSearcher:
    def __init__(self, dataset_id="tomg-group-umd/cinepile"):
        self.dataset_id = dataset_id
        self.text_model = get_model()
        self.token = os.environ.get('DATASET_KEY')
        if not self.token:
            st.error("Please set the DATASET_KEY environment variable with your Hugging Face token.")
            st.stop()
        
        # Initialize numpy for model inputs
        self.np = np
        
        # Load dataset info if not already loaded
        if st.session_state['dataset_info'] is None:
            st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)

    def load_page(self, page=0):
        """Load a specific page of data using cached function"""
        return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)

    def quick_search(self, query, df):
        """Fast search on current page"""
        if df.empty:
            return df
        
        try:
            # Get columns to search (excluding numpy array columns)
            searchable_cols = []
            for col in df.columns:
                sample_val = df[col].iloc[0]
                if not isinstance(sample_val, (np.ndarray, bytes)):
                    searchable_cols.append(col)
            
            # Prepare query
            query_lower = query.lower()
            query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
            scores = []
            
            # Process each row
            for _, row in df.iterrows():
                # Combine text from searchable columns
                text_parts = []
                for col in searchable_cols:
                    val = row[col]
                    if val is not None:
                        if isinstance(val, (list, dict)):
                            text_parts.append(str(val))
                        else:
                            text_parts.append(str(val))
                
                text = ' '.join(text_parts)
                
                # Calculate scores
                if text.strip():
                    # Keyword matching
                    keyword_score = text.lower().count(query_lower) / max(len(text.split()), 1)
                    
                    # Semantic matching
                    text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
                    semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
                    
                    # Combine scores
                    combined_score = 0.5 * semantic_score + 0.5 * keyword_score
                else:
                    combined_score = 0.0
                
                scores.append(combined_score)
        
        # Get top results
        results_df = df.copy()
        results_df['score'] = scores
        return results_df.sort_values('score', ascending=False)

def render_result(result):
    """Render a single search result"""
    score = result.pop('score', 0)
    
    # Display video if available
    if 'youtube_id' in result:
        st.video(
            f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}"
        )
    
    # Display other fields
    cols = st.columns([2, 1])
    with cols[0]:
        for key, value in result.items():
            if isinstance(value, (str, int, float)):
                st.write(f"**{key}:** {value}")
    
    with cols[1]:
        st.metric("Relevance Score", f"{score:.2%}")

def main():
    st.title("🎥 Fast Video Dataset Search")
    
    # Initialize search class
    searcher = FastDatasetSearcher()
    
    # Show dataset info
    if st.session_state['dataset_info']:
        st.sidebar.write("### Dataset Info")
        st.sidebar.write(f"Total examples: {st.session_state['dataset_info'].splits['train'].num_examples:,}")
        
        total_pages = st.session_state['dataset_info'].splits['train'].num_examples // ROWS_PER_PAGE
        current_page = st.number_input("Page", min_value=0, max_value=total_pages, value=st.session_state['current_page'])
    else:
        current_page = st.number_input("Page", min_value=0, value=st.session_state['current_page'])
    
    # Load current page
    with st.spinner(f"Loading page {current_page}..."):
        df = searcher.load_page(current_page)
    
    if df.empty:
        st.warning("No data available for this page.")
        return
    
    # Search interface
    col1, col2 = st.columns([3, 1])
    with col1:
        query = st.text_input("Search in current page:", 
                             help="Searches within currently loaded data")
    with col2:
        max_results = st.slider("Max results", 1, ROWS_PER_PAGE, 10)
    
    if query:
        with st.spinner("Searching..."):
            results = searcher.quick_search(query, df)
            
            # Display results
            st.write(f"Found {len(results)} results on this page:")
            for i, (_, result) in enumerate(results.head(max_results).iterrows(), 1):
                with st.expander(f"Result {i}", expanded=i==1):
                    render_result(result)
    
    # Show raw data
    with st.expander("Show Raw Data"):
        st.dataframe(df)
    
    # Navigation buttons
    cols = st.columns(2)
    with cols[0]:
        if st.button("⬅️ Previous Page") and current_page > 0:
            st.session_state['current_page'] = current_page - 1
            st.rerun()
    with cols[1]:
        if st.button("Next Page ➡️"):
            st.session_state['current_page'] = current_page + 1
            st.rerun()

if __name__ == "__main__":
    main()