Spaces:
Sleeping
Sleeping
write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification | |
Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras: | |
python | |
Copy code | |
import streamlit as st | |
import pandas as pd | |
import pandas_profiling | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense | |
from sklearn.model_selection import train_test_split | |
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide") | |
st.title("AutoML Streamlit App") | |
# Upload a CSV dataset | |
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) | |
if uploaded_file is not None: | |
# Load the dataset and display the first 5 rows | |
df = pd.read_csv(uploaded_file) | |
st.dataframe(df.head()) | |
# Perform pandas profiling and display the report | |
profile = pandas_profiling.ProfileReport(df) | |
st.write("Pandas Profiling Report:", profile) | |
# Split the data into features and target variables | |
X = df.drop(df.columns[-1], axis=1) | |
y = df[df.columns[-1]] | |
# Split the data into training and testing sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) | |
# Define a sequential model with TensorFlow and Keras | |
model = Sequential() | |
model.add(Dense(16, input_dim=X_train.shape[1], activation="relu")) | |
model.add(Dense(1, activation="sigmoid")) | |
# Compile the model | |
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
# Train the model | |
model.fit(X_train, y_train, epochs=10, batch_size=32) | |
# Evaluate the model on the test set | |
test_loss, test_accuracy = model.evaluate(X_test, y_test) | |
st.write("Test Accuracy:", test_accuracy) | |
# Generate the code to do classification | |
st.write("Generated Code:") | |
st.code(""" | |
import pandas as pd | |
import tensorflow as tf | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense | |
# Load the dataset | |
df = pd.read_csv("dataset.csv") | |
# Split the data into features and target variables | |
X = df.drop(df.columns[-1], axis=1) | |
y = df[df.columns[-1]] | |
# Define a sequential model with TensorFlow and Keras | |
model = Sequential() | |
model.add(Dense(16, input_dim=X.shape[1], activation="relu")) | |
model.add(Dense(1, activation="sigmoid")) | |
# Compile the model | |
model.compile(loss="binary_crossentropy", optimizer=" | |
Aaron Wacker | |
continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file | |
Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file: | |
python | |
Copy code | |
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide") | |
st.title("AutoML Streamlit App") | |
# Upload a CSV dataset | |
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) | |
if uploaded_file is not None: | |
# Load the dataset and display the first 5 rows | |
df = pd.read_csv(uploaded_file) | |
st.dataframe(df.head()) | |
# Generate a treemap or sunburst plot based on data types | |
numerical_cols = df.select_dtypes(include=["float", "int"]).columns | |
categorical_cols = df.select_dtypes(include=["object"]).columns | |
if len(numerical_cols) >= 2: | |
fig = px.scatter_matrix(df, dimensions=numerical_cols) | |
st.plotly_chart(fig) | |
elif len(categorical_cols) >= 2: | |
fig = px.treemap(df, path=categorical_cols) | |
st.plotly_chart(fig) | |
else: | |
fig = px.sunburst(df, path=categorical_cols + numerical_cols) | |
st.plotly_chart(fig) | |
In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset. | |
Regenerate response | |