Spaces:
Sleeping
Sleeping
| write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification | |
| Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras: | |
| python | |
| Copy code | |
| import streamlit as st | |
| import pandas as pd | |
| import pandas_profiling | |
| from tensorflow.keras.models import Sequential | |
| from tensorflow.keras.layers import Dense | |
| from sklearn.model_selection import train_test_split | |
| st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide") | |
| st.title("AutoML Streamlit App") | |
| # Upload a CSV dataset | |
| uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) | |
| if uploaded_file is not None: | |
| # Load the dataset and display the first 5 rows | |
| df = pd.read_csv(uploaded_file) | |
| st.dataframe(df.head()) | |
| # Perform pandas profiling and display the report | |
| profile = pandas_profiling.ProfileReport(df) | |
| st.write("Pandas Profiling Report:", profile) | |
| # Split the data into features and target variables | |
| X = df.drop(df.columns[-1], axis=1) | |
| y = df[df.columns[-1]] | |
| # Split the data into training and testing sets | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) | |
| # Define a sequential model with TensorFlow and Keras | |
| model = Sequential() | |
| model.add(Dense(16, input_dim=X_train.shape[1], activation="relu")) | |
| model.add(Dense(1, activation="sigmoid")) | |
| # Compile the model | |
| model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
| # Train the model | |
| model.fit(X_train, y_train, epochs=10, batch_size=32) | |
| # Evaluate the model on the test set | |
| test_loss, test_accuracy = model.evaluate(X_test, y_test) | |
| st.write("Test Accuracy:", test_accuracy) | |
| # Generate the code to do classification | |
| st.write("Generated Code:") | |
| st.code(""" | |
| import pandas as pd | |
| import tensorflow as tf | |
| from tensorflow.keras.models import Sequential | |
| from tensorflow.keras.layers import Dense | |
| # Load the dataset | |
| df = pd.read_csv("dataset.csv") | |
| # Split the data into features and target variables | |
| X = df.drop(df.columns[-1], axis=1) | |
| y = df[df.columns[-1]] | |
| # Define a sequential model with TensorFlow and Keras | |
| model = Sequential() | |
| model.add(Dense(16, input_dim=X.shape[1], activation="relu")) | |
| model.add(Dense(1, activation="sigmoid")) | |
| # Compile the model | |
| model.compile(loss="binary_crossentropy", optimizer=" | |
| Aaron Wacker | |
| continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file | |
| Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file: | |
| python | |
| Copy code | |
| import streamlit as st | |
| import pandas as pd | |
| import plotly.express as px | |
| st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide") | |
| st.title("AutoML Streamlit App") | |
| # Upload a CSV dataset | |
| uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) | |
| if uploaded_file is not None: | |
| # Load the dataset and display the first 5 rows | |
| df = pd.read_csv(uploaded_file) | |
| st.dataframe(df.head()) | |
| # Generate a treemap or sunburst plot based on data types | |
| numerical_cols = df.select_dtypes(include=["float", "int"]).columns | |
| categorical_cols = df.select_dtypes(include=["object"]).columns | |
| if len(numerical_cols) >= 2: | |
| fig = px.scatter_matrix(df, dimensions=numerical_cols) | |
| st.plotly_chart(fig) | |
| elif len(categorical_cols) >= 2: | |
| fig = px.treemap(df, path=categorical_cols) | |
| st.plotly_chart(fig) | |
| else: | |
| fig = px.sunburst(df, path=categorical_cols + numerical_cols) | |
| st.plotly_chart(fig) | |
| In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset. | |
| Regenerate response | |