Spaces:
Sleeping
Sleeping
Create Prompts.md
Browse files- Prompts.md +115 -0
Prompts.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification
|
4 |
+
Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras:
|
5 |
+
|
6 |
+
python
|
7 |
+
Copy code
|
8 |
+
import streamlit as st
|
9 |
+
import pandas as pd
|
10 |
+
import pandas_profiling
|
11 |
+
from tensorflow.keras.models import Sequential
|
12 |
+
from tensorflow.keras.layers import Dense
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
|
15 |
+
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
|
16 |
+
|
17 |
+
st.title("AutoML Streamlit App")
|
18 |
+
|
19 |
+
# Upload a CSV dataset
|
20 |
+
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
|
21 |
+
if uploaded_file is not None:
|
22 |
+
# Load the dataset and display the first 5 rows
|
23 |
+
df = pd.read_csv(uploaded_file)
|
24 |
+
st.dataframe(df.head())
|
25 |
+
|
26 |
+
# Perform pandas profiling and display the report
|
27 |
+
profile = pandas_profiling.ProfileReport(df)
|
28 |
+
st.write("Pandas Profiling Report:", profile)
|
29 |
+
|
30 |
+
# Split the data into features and target variables
|
31 |
+
X = df.drop(df.columns[-1], axis=1)
|
32 |
+
y = df[df.columns[-1]]
|
33 |
+
|
34 |
+
# Split the data into training and testing sets
|
35 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
36 |
+
|
37 |
+
# Define a sequential model with TensorFlow and Keras
|
38 |
+
model = Sequential()
|
39 |
+
model.add(Dense(16, input_dim=X_train.shape[1], activation="relu"))
|
40 |
+
model.add(Dense(1, activation="sigmoid"))
|
41 |
+
|
42 |
+
# Compile the model
|
43 |
+
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
|
44 |
+
|
45 |
+
# Train the model
|
46 |
+
model.fit(X_train, y_train, epochs=10, batch_size=32)
|
47 |
+
|
48 |
+
# Evaluate the model on the test set
|
49 |
+
test_loss, test_accuracy = model.evaluate(X_test, y_test)
|
50 |
+
st.write("Test Accuracy:", test_accuracy)
|
51 |
+
|
52 |
+
# Generate the code to do classification
|
53 |
+
st.write("Generated Code:")
|
54 |
+
st.code("""
|
55 |
+
import pandas as pd
|
56 |
+
import tensorflow as tf
|
57 |
+
from tensorflow.keras.models import Sequential
|
58 |
+
from tensorflow.keras.layers import Dense
|
59 |
+
|
60 |
+
# Load the dataset
|
61 |
+
df = pd.read_csv("dataset.csv")
|
62 |
+
|
63 |
+
# Split the data into features and target variables
|
64 |
+
X = df.drop(df.columns[-1], axis=1)
|
65 |
+
y = df[df.columns[-1]]
|
66 |
+
|
67 |
+
# Define a sequential model with TensorFlow and Keras
|
68 |
+
model = Sequential()
|
69 |
+
model.add(Dense(16, input_dim=X.shape[1], activation="relu"))
|
70 |
+
model.add(Dense(1, activation="sigmoid"))
|
71 |
+
|
72 |
+
# Compile the model
|
73 |
+
model.compile(loss="binary_crossentropy", optimizer="
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
Aaron Wacker
|
78 |
+
continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file
|
79 |
+
Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file:
|
80 |
+
|
81 |
+
python
|
82 |
+
Copy code
|
83 |
+
import streamlit as st
|
84 |
+
import pandas as pd
|
85 |
+
import plotly.express as px
|
86 |
+
|
87 |
+
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
|
88 |
+
|
89 |
+
st.title("AutoML Streamlit App")
|
90 |
+
|
91 |
+
# Upload a CSV dataset
|
92 |
+
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
|
93 |
+
if uploaded_file is not None:
|
94 |
+
# Load the dataset and display the first 5 rows
|
95 |
+
df = pd.read_csv(uploaded_file)
|
96 |
+
st.dataframe(df.head())
|
97 |
+
|
98 |
+
# Generate a treemap or sunburst plot based on data types
|
99 |
+
numerical_cols = df.select_dtypes(include=["float", "int"]).columns
|
100 |
+
categorical_cols = df.select_dtypes(include=["object"]).columns
|
101 |
+
|
102 |
+
if len(numerical_cols) >= 2:
|
103 |
+
fig = px.scatter_matrix(df, dimensions=numerical_cols)
|
104 |
+
st.plotly_chart(fig)
|
105 |
+
elif len(categorical_cols) >= 2:
|
106 |
+
fig = px.treemap(df, path=categorical_cols)
|
107 |
+
st.plotly_chart(fig)
|
108 |
+
else:
|
109 |
+
fig = px.sunburst(df, path=categorical_cols + numerical_cols)
|
110 |
+
st.plotly_chart(fig)
|
111 |
+
In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset.
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
Regenerate response
|