awacke1 commited on
Commit
8ba055a
·
1 Parent(s): 957dcfa

Create Prompts.md

Browse files
Files changed (1) hide show
  1. Prompts.md +115 -0
Prompts.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification
4
+ Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras:
5
+
6
+ python
7
+ Copy code
8
+ import streamlit as st
9
+ import pandas as pd
10
+ import pandas_profiling
11
+ from tensorflow.keras.models import Sequential
12
+ from tensorflow.keras.layers import Dense
13
+ from sklearn.model_selection import train_test_split
14
+
15
+ st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
16
+
17
+ st.title("AutoML Streamlit App")
18
+
19
+ # Upload a CSV dataset
20
+ uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
21
+ if uploaded_file is not None:
22
+ # Load the dataset and display the first 5 rows
23
+ df = pd.read_csv(uploaded_file)
24
+ st.dataframe(df.head())
25
+
26
+ # Perform pandas profiling and display the report
27
+ profile = pandas_profiling.ProfileReport(df)
28
+ st.write("Pandas Profiling Report:", profile)
29
+
30
+ # Split the data into features and target variables
31
+ X = df.drop(df.columns[-1], axis=1)
32
+ y = df[df.columns[-1]]
33
+
34
+ # Split the data into training and testing sets
35
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
36
+
37
+ # Define a sequential model with TensorFlow and Keras
38
+ model = Sequential()
39
+ model.add(Dense(16, input_dim=X_train.shape[1], activation="relu"))
40
+ model.add(Dense(1, activation="sigmoid"))
41
+
42
+ # Compile the model
43
+ model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
44
+
45
+ # Train the model
46
+ model.fit(X_train, y_train, epochs=10, batch_size=32)
47
+
48
+ # Evaluate the model on the test set
49
+ test_loss, test_accuracy = model.evaluate(X_test, y_test)
50
+ st.write("Test Accuracy:", test_accuracy)
51
+
52
+ # Generate the code to do classification
53
+ st.write("Generated Code:")
54
+ st.code("""
55
+ import pandas as pd
56
+ import tensorflow as tf
57
+ from tensorflow.keras.models import Sequential
58
+ from tensorflow.keras.layers import Dense
59
+
60
+ # Load the dataset
61
+ df = pd.read_csv("dataset.csv")
62
+
63
+ # Split the data into features and target variables
64
+ X = df.drop(df.columns[-1], axis=1)
65
+ y = df[df.columns[-1]]
66
+
67
+ # Define a sequential model with TensorFlow and Keras
68
+ model = Sequential()
69
+ model.add(Dense(16, input_dim=X.shape[1], activation="relu"))
70
+ model.add(Dense(1, activation="sigmoid"))
71
+
72
+ # Compile the model
73
+ model.compile(loss="binary_crossentropy", optimizer="
74
+
75
+
76
+
77
+ Aaron Wacker
78
+ continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file
79
+ Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file:
80
+
81
+ python
82
+ Copy code
83
+ import streamlit as st
84
+ import pandas as pd
85
+ import plotly.express as px
86
+
87
+ st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
88
+
89
+ st.title("AutoML Streamlit App")
90
+
91
+ # Upload a CSV dataset
92
+ uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
93
+ if uploaded_file is not None:
94
+ # Load the dataset and display the first 5 rows
95
+ df = pd.read_csv(uploaded_file)
96
+ st.dataframe(df.head())
97
+
98
+ # Generate a treemap or sunburst plot based on data types
99
+ numerical_cols = df.select_dtypes(include=["float", "int"]).columns
100
+ categorical_cols = df.select_dtypes(include=["object"]).columns
101
+
102
+ if len(numerical_cols) >= 2:
103
+ fig = px.scatter_matrix(df, dimensions=numerical_cols)
104
+ st.plotly_chart(fig)
105
+ elif len(categorical_cols) >= 2:
106
+ fig = px.treemap(df, path=categorical_cols)
107
+ st.plotly_chart(fig)
108
+ else:
109
+ fig = px.sunburst(df, path=categorical_cols + numerical_cols)
110
+ st.plotly_chart(fig)
111
+ In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset.
112
+
113
+
114
+
115
+ Regenerate response